

Al

Annex I: Atlas of Global and Regional Climate Projections

Editorial Team:

Geert Jan van Oldenborgh (Netherlands), Matthew Collins (UK), Julie Arblaster (Australia), Jens Hesselbjerg Christensen (Denmark), Jochem Marotzke (Germany), Scott B. Power (Australia), Markku Rummukainen (Sweden), Tianjun Zhou (China)

Advisory Board:

David Wratt (New Zealand), Francis Zwiers (Canada), Bruce Hewitson (South Africa)

Review Editor Team:

Pascale Delecluse (France), John Fyfe (Canada), Karl Taylor (USA)

This annex should be cited as:

IPCC, 2013: Annex I: Atlas of Global and Regional Climate Projections [van Oldenborgh, G.J., M. Collins, J. Arblaster, J.H. Christensen, J. Marotzke, S.B. Power, M. Rummukainen and T. Zhou (eds.)]. In: *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Table of Contents

Introduction and Scope
Technical Notes
References
Atlas
Figures Al.4 to Al.7: World
Figures Al.8 to Al.11: Arctic
Figures AI.12 to AI.15: High latitudes
Figures AI.16 to AI.19: North America (West)
Figures AI.20 to AI.23: North America (East)
Figures AI.24 to AI.27: Central America and Caribbean
Figures AI.28 to AI.31: Northern South America
Figures Al.32 to Al.35: Southern South America
Figures AI.36 to AI.39: North and Central Europe
Figures AI.40 to AI.43: Mediterranean and Sahara
Figures AI.44 to AI.47: West and East Africa
Figures AI.48 to AI.51: Southern Africa and West Indian Ocean1362
Figures Al.52 to Al.55: West and Central Asia
Figures Al.56 to Al.59: Eastern Asia and Tibetan Plateau 1370
Figures Al.60 to Al.63: South Asia1374
Figures Al.64 to Al.67: Southeast Asia
Figures AI.68 to AI.71: Australia and New Zealand
Figures AI.72 to AI.75: Pacific Islands region
Figures Al.76 to Al.79: Antarctica

Supplementary Material

Supplementary Material is available in online versions of the report.

Introduction and Scope

This Annex presents a series of figures showing global and regional patterns of climate change computed from global climate model output gathered as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012). Maps of surface air temperature change and relative precipitation change (i.e., change expressed as a percentage of mean precipitation) in different seasons are presented for the globe and for a number of different sub-continental-scale regions. Twenty-year average changes for the near term (2016–2035), for the mid term (2046-2065) and for the long term (2081-2100) are given, relative to a reference period of 1986-2005. Time series for temperature and relative precipitation changes are shown for global land and sea averages, the 26 sub-continental SREX (IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation) regions (IPCC, 2012) augmented with polar regions and the Caribbean, two Indian Ocean and three Pacific Ocean regions. In total this Annex gives projections for 35 regions, 2 variables and 2 seasons. The projections are made under the Representative Concentration Pathway (RCP) scenarios, which are introduced in Chapter 1 with more technical detail given in Section 12.3 (also note the discussion of near-term biases in Sections 11.3.5.1 and 11.3.6.1). Maps are shown only for the RCP4.5 scenario; however, the time series presented show how the area-average response varies among the RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios. Spatial maps for the other RCP scenarios and additional seasons are presented in the Annex I Supplementary Material. Figures Al.1 and Al.2 give a graphical explanation of aspects of both the time series plots and the spatial maps. While some of the background to the information presented is given here, discussion of the maps and time series, as well as important additional background, is provided in Chapters 9, 11, 12 and 14. Figure captions on each page of the Atlas reference the specific sub-sections in the report relevant to the regions considered on that page.

The projection of future climate change involves the careful evaluation of models, taking into account uncertainties in observations and consideration of the physical basis of the findings, in order to characterize the credibility of the projections and assess their sensitivity to uncertainties. As discussed in Chapter 9, different climate models have varying degrees of success in simulating past climate variability and mean state when compared to observations. Verification of regional trends is discussed in Box 11.2 and provides further information on the credibility of model projections. The information presented in this Annex is based entirely on all available CMIP5 model output with equal weight given to each model or version with different parameterizations.

Complementary methods for making quantitative projections, in which model output is combined with information about model performance using statistical techniques, exist and should be considered in impacts studies (see Sections 9.8.3, 11.3.1 and 12.2.2 to 12.2.3). Although results from the application of such methods can be assessed alongside the projections from CMIP5 presented here, it is beyond the scope of this Annex. Nor do the simple maps provided represent a robust estimate of the uncertainty associated with the projections. Here the range of model spread is provided as a simple, albeit imperfect, guide to the range of possible futures (including the effect of natural variability). Alternative approaches used to estimate projection uncertainty

are discussed in Sections 11.3.1 and 12.2.2 to 12.2.3. The reliability of past trends is assessed in Box 11.2, which concludes that the time series and maps cannot be interpreted literally as probability density functions. They should not be interpreted as 'forecasts'.

Projections of future climate change are conditional on assumptions of climate forcing, affected by shortcomings of climate models and inevitably also subject to internal variability when considering specific periods. Projected patterns of climate change may differ from one climate model generation to the next due to improvements in models. Some model-inadequacies are common to all models, but so are many patterns of change across successive generations of models, which gives some confidence in projections. The information presented is intended to be only a starting point for anyone interested in more detailed information on projections of future climate change and complements the assessment in Chapters 11, 12 and 14.

Technical Notes

Data and Processing: The figures have been constructed using the CMIP5 model output available at the time of the AR5 cut-off for accepted papers (15 March 2013). This data set comprises 32/42/25/39 scenario experiments for RCP2.6/4.5/6.0/8.5 from 42 climate models (Table Al.1). Only concentration-driven experiments are used (i.e., those in which concentrations rather than emissions of greenhouse gases are prescribed) and only one ensemble member from each model is selected, even if multiple realizations exist with different initial conditions and different realizations of natural variability. Hence each model is given equal weight. Maps from only one scenario (RCP4.5) are shown but time series are included from all four RCPs. Maps from other RCPs are presented in the Annex I Supplementary Material.

Reference Period: Projections are expressed as anomalies with respect to the reference period of 1986–2005 for both time series and spatial maps (i.e., differences between the future period and the reference period). Thus the changes are relative to the climate change that has already occurred since the pre-industrial period and which is discussed in Chapters 2 and 10. For quantities where the trend is larger than the natural variability such as large-area temperature changes, a more recent reference period would give better estimates (see Section 11.3.6.1); for quantities where the natural variability is much larger than the trend a longer reference period would be preferable.

Equal Model Weighting: Model evaluation uses a multitude of techniques (see Chapter 9) and there is no consensus in the community about how to use this information to assign likelihood to different model projections. Consequently, the different CMIP5 models used for the projections in the Atlas are all considered to give equally likely projections in the sense of 'one model, one vote'. Models with variations in physical parameterization schemes are treated as distinct models.

Variables: Two variables have been plotted: surface air temperature change and relative precipitation change. The relative precipitation change is defined as the percentage change from the 1986–2005 reference period in each ensemble member. For the time series, the variables are first averaged over the domain and then the changes from the reference period are computed. This implies that in regions with

large climatological precipitation gradients, the change is generally dominated by the areas with the most precipitation.

Seasons: For temperature, the standard meteorological seasons June to August and December to February are shown, as these often correspond roughly with the warmest and coldest seasons. The annual mean and remaining seasons, March to May and September to October can be found in the Annex I Supplementary Material. For precipitation, the half-years April to September and October to March are shown so that in most monsoon areas the local rain seasons are entirely contained within the seasonal range plotted. Because the seasonal average is computed first, followed by the percentile change, these numbers are dominated by the rainy months within the half-year. The annual means are included in the Supplementary Material.

Regions: In addition to the global maps, the areas defined in the SREX (IPCC, 2012) are plotted with the addition of six regions containing the Caribbean, Indian Ocean and Pacific Island States and land and sea areas of the two polar regions. For regions containing large land-areas, averages are computed only over land grid points only. For ocean regions, averages are computed over both land and ocean grid points (see figure captions). A grid box is considered land if the land fraction is larger than 50% and sea if it is smaller than this. SREX regions with long coastlines (west coast of South America, North Europe, Southeast Asia) therefore include some influence of the ocean. Note that temperature and precipitation over islands may be very different from those over the surrounding sea.

Time Series: For each of the resulting areas the areal mean is computed on the original model grid using land, sea or all points, depending on the definition of the region (see above). As an indication of the model uncertainty and natural variability, the time series of each model and scenario over the common period 1900-2100 are shown on the top of the page as anomalies relative to 1986-2005 (the seasons December to February and October to March are counted towards the second year in the interval). The multi-model ensemble means are also shown. Finally, for the period 2081-2100, the 20-year means are computed and the box-and-whisker plots show the 5th, 25th, 50th (median), 75th and 95th percentiles sampled over the distribution of the 20-year means of the model time series indicated in Table AI.1, including both natural variability and model spread. In the 20-year means the natural variability is suppressed relative to the annual values in the time series whereas the model uncertainty is the same. Note that owing to a smaller number of models, the box-and-whisker plots for the RCP2.6 scenario and especially the RCP6.0 scenario are less certain than those for RCP4.5 and RCP8.5.

Spatial Maps: The maps in the Atlas show, for an area encompassing two or three regions, the difference between the periods 2016–2035, 2046–2065 and 2081–2100 and the reference period 1986–2005. As local projections of climate change are uncertain, a measure of the range of model projections is shown in addition to the median response of the model ensemble interpolated to a common 2.5° grid (the interpolation was done bilinearly for surface air temperature and first order conservatively for precipitation). It should again be emphasized (see above) that this range does not represent the full uncertainty in the projection. On the left, the 25th percentile of the distribution

of ensemble members is shown, on the right the 75th percentile. The median is shown in the middle (different from similar plots in Chapters 11 and 12 and the time series which show the multi-model mean). The distribution combines the effects of natural variability and model spread. The colour scale is kept constant over all maps.

Hatching: Hatching indicates regions where the magnitude of the change of the 20-year mean is less than 1 standard deviation of model-estimated present-day natural variability of 20-year mean differences. The natural variability is estimated using all pre-industrial control runs which are at least 500 years long. The first 100 years of the pre-industrial are ignored. The natural variability is then calculated for every grid point as the standard deviation of non-overlapping 20-year means after a quadratic fit is subtracted at every grid point to eliminate model drift. This is multiplied by the square root of 2, a factor that arises as the comparison is between two distributions of numbers. The median across all models of that quantity is used. This characterizes the typical difference between two 20-year averages that would be expected due to unforced internal variability. The hatching is applied to all maps so, for example, if the 25th percentile of the distribution of model projections is less than 1 standard deviation of natural variability, it is hatched.

The hatching can be interpreted as some indication of the strength of the future anomalies from present-day climate, when compared to the strength of present day internal 20-year variability. It either means that the change is relatively small or that there is little agreement between models on the sign of the change. It is presented only as a guide to assessing the strength of change as the difference between two 20-year intervals. Using other measures of natural variability would give smaller or larger hatched areas, but the colours underneath the hatching would not be very different. Other methods of hatching and stippling are possible (see Box 12.1) and, in cases where such information is critical, it is recommended that thorough attention is paid to assessing significance using a statistical test appropriate to the problem being considered.

Scenarios: Spatial patterns of changes for scenarios other than RCP4.5 can be found in the Annex I Supplementary Material.

References

IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [C. B. Field, V. Baros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 582 pp.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: A summary of the CMIP5 experiment design. *Bull. Am. Meteorol. Soc.*, **93**, 485–498.

Table Al.1 The CMIP5 models used in this Annex for each of the historical and RCP scenario experiments. A number in each column is the identifier of the single ensemble member from that model that is used. A blank indicates no run was used, usually because that scenario run was not available. For the pre-industrial control column (piControl), a 'tas' indicates that those control simulations are used in the estimate of internal variability of surface air temperature and a 'pr' indicates that those control simulations are used in the estimate of precipitation internal variability.

CMIP5 Model Name	piControl	Historical	RCP2.6	RCP4.5	RCP6.0	RCP8.5
ACCESS1-0	tas/pr	1		1		1
ACCESS1-3	tas/pr	1		1		1
bcc-csm1-1	tas/pr	1	1	1	1	1
bcc-csm1-1-m		1	1	1	1	
BNU-ESM	tas/pr	1	1	1		1
CanESM2	tas/pr	1	1	1		1
CCSM4	tas/pr	1	1	1	1	1
CESM1-BGC	tas/pr	1		1		1
CESM1-CAM5		1	1	1	1	1
CMCC-CM		1		1		1
CMCC-CMS	tas/pr	1		1		1
CNRM-CM5	tas/pr	1	1	1		1
CSIRO-Mk3-6-0	tas/pr	1	1	1	1	1
EC-EARTH		8	8	8		8
FGOALS-g2	tas/pr	1	1	1		1
FIO-ESM	tas/pr	1	1	1	1	1
GFDL-CM3	tas/pr	1	1	1	1	1
GFDL-ESM2G	tas/pr	1	1	1	1	1
GFDL-ESM2M	tas/pr	1	1	1	1	1
GISS-E2-H p1		1	1	1	1	1
GISS-E2-H p2	tas/pr	1	1	1	1	1
GISS-E2-H p3	tas/pr	1	1	1	1	1
GISS-E2-H-CC		1		1		
GISS-E2-R p1		1	1	1	1	1
GISS-E2-R p2	pr	1	1	1	1	1
GISS-E2-R p3	pr	1	1	1	1	1
GISS-E2-R-CC		1		1		
HadGEM2-AO		1	1	1	1	1
HadGEM2-CC		1		1		1
HadGEM2-ES		2	2	2	2	2
inmcm4	tas/pr	1		1		1
IPSL-CM5A-LR	tas/pr	1	1	1	1	1
IPSL-CM5A-MR		1	1	1	1	1
IPSL-CM5B-LR		1		1		1
MIROC5	tas/pr	1	1	1	1	1
MIROC-ESM	tas/pr	1	1	1	1	1
MIROC-ESM-CHEM		1	1	1	1	1
MPI-ESM-LR	tas/pr	1	1	1		1
MPI-ESM-MR	tas/pr	1	1	1		1
MPI-ESM-P	tas/pr					
MRI-CGCM3	tas/pr	1	1	1	1	1
NorESM1-M	tas/pr	1	1	1	1	1
NorESM1-ME	·	1	1	1	1	1
Number of models		42	32	42	25	39

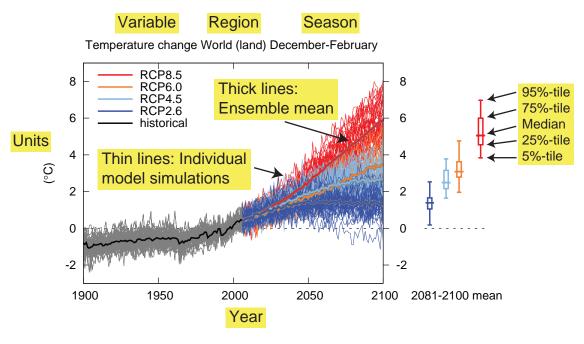


Figure Al.1 | Explanation of the features of a typical time series figure presented in Annex I.

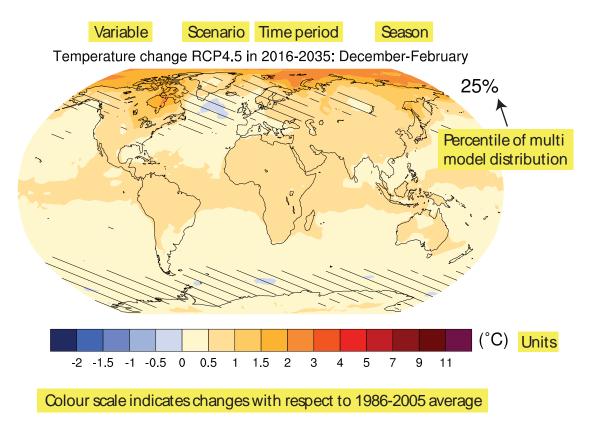


Figure AI.2 | Explanation of the features of a typical spatial map presented in Annex I. Hatching indicates regions where the magnitude of the 25th, median or 75th percentile of the 20-year mean change is less than 1 standard deviation of model-estimated natural variability of 20-year mean differences.

Atlas

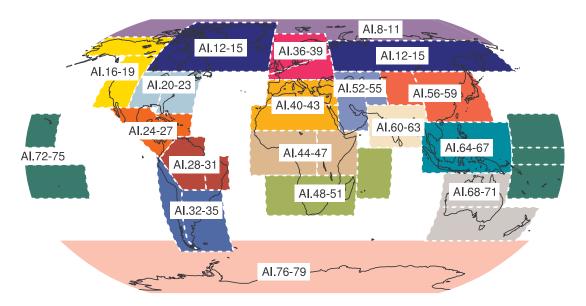


Figure Al.3 | Overview of the SREX, ocean and polar regions used.

Figures Al.4 to Al.7: World

Figures Al.8 to Al.11: Arctic

Figures Al.12 to Al.15: High latitudes

Figures Al.16 to Al.19: North America (West)

Figures AI.20 to AI.23: North America (East)

Figures Al.24 to Al.27: Central America and Caribbean

Figures AI.28 to AI.31: Northern South America

Figures AI.32 to AI.35: Southern South America

Figures Al.36 to Al.39: North and Central Europe

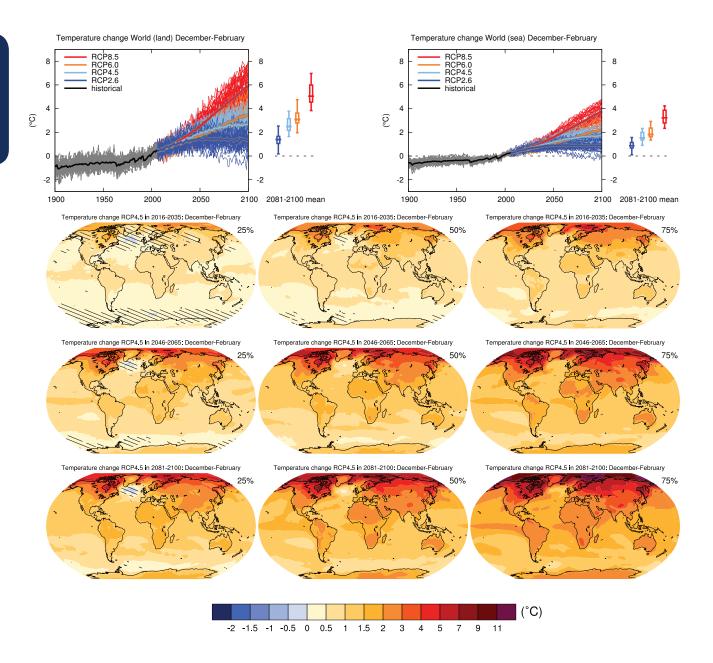
Figures Al.40 to Al.43: Mediterranean and Sahara

Figures AI.44 to AI.47: West and East Africa

Figures Al.48 to Al.51: Southern Africa and West Indian Ocean

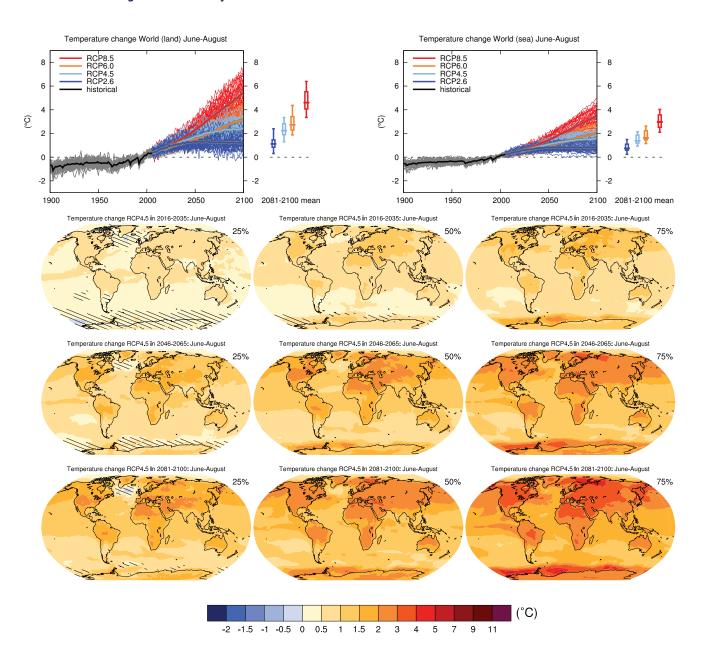
Figures AI.52 to AI.55: West and Central Asia

Figures AI.56 to AI.59: Eastern Asia and Tibetan Plateau

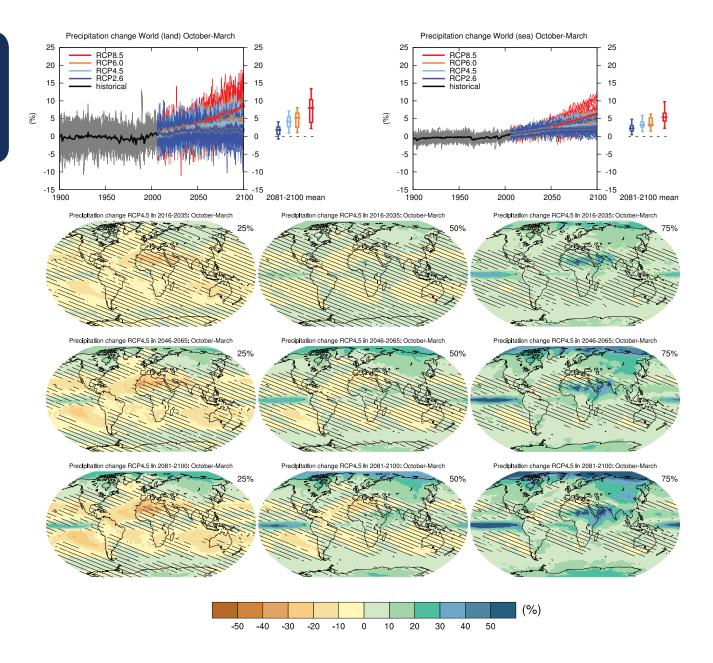

Figures AI.60 to AI.63: South Asia

Figures Al.64 to Al.67: Southeast Asia

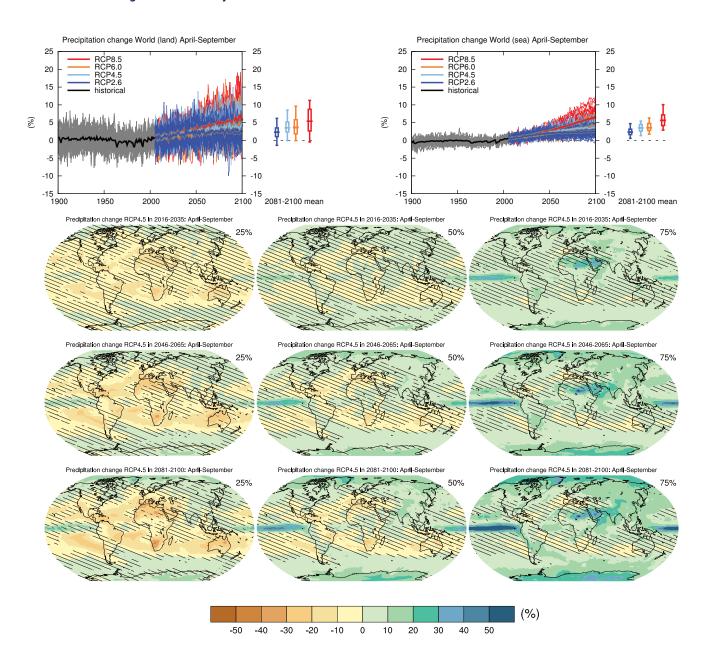
Figures AI.68 to AI.71: Australia and New Zealand


Figures AI.72 to AI.75: Pacific Islands region

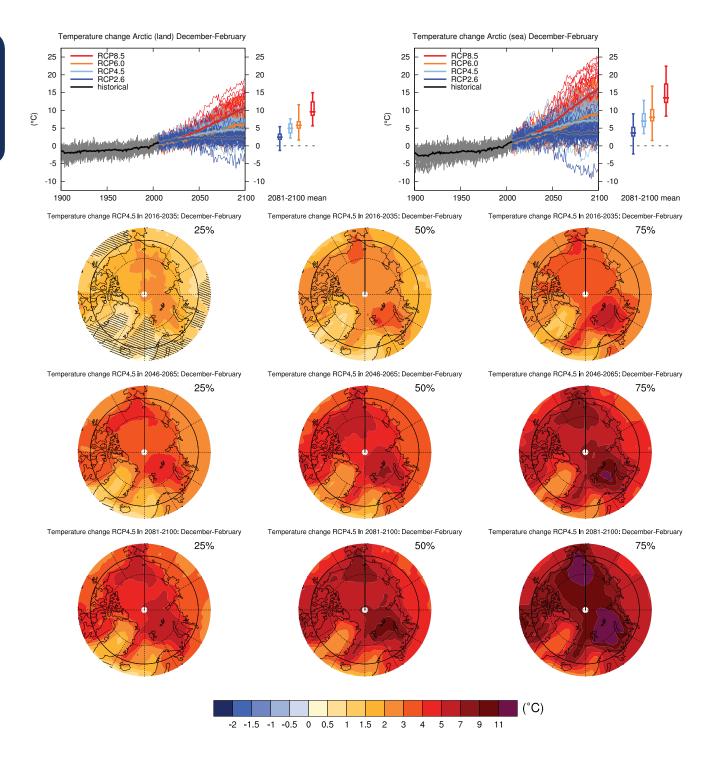
Figures Al.76 to Al.79: Antarctica


Figure AI.4 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points over the globe in December to February. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

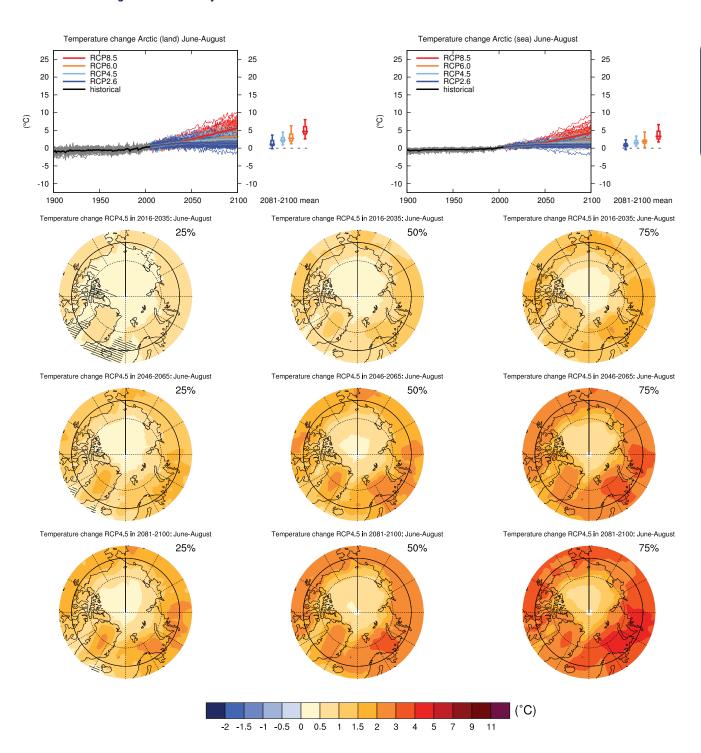
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, 11.3.2.1.2, 11.3.3.1, Box 11.2, 12.4.3.1 and 12.4.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.5 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points over the globe in June to August. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

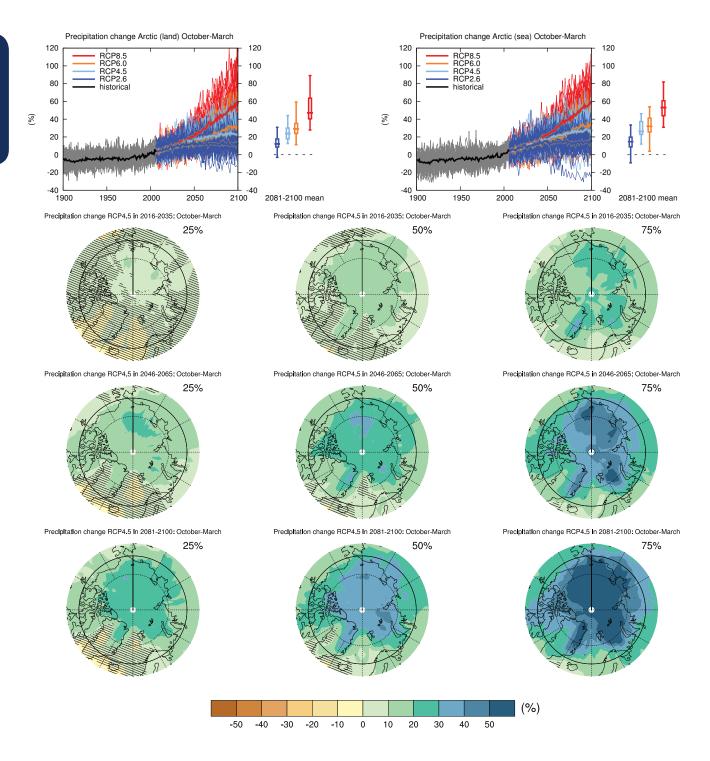
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, 11.3.2.1.2, 11.3.3.1, Box 11.2, 12.4.3.1 and 12.4.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.6 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points over the globe in October to March. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

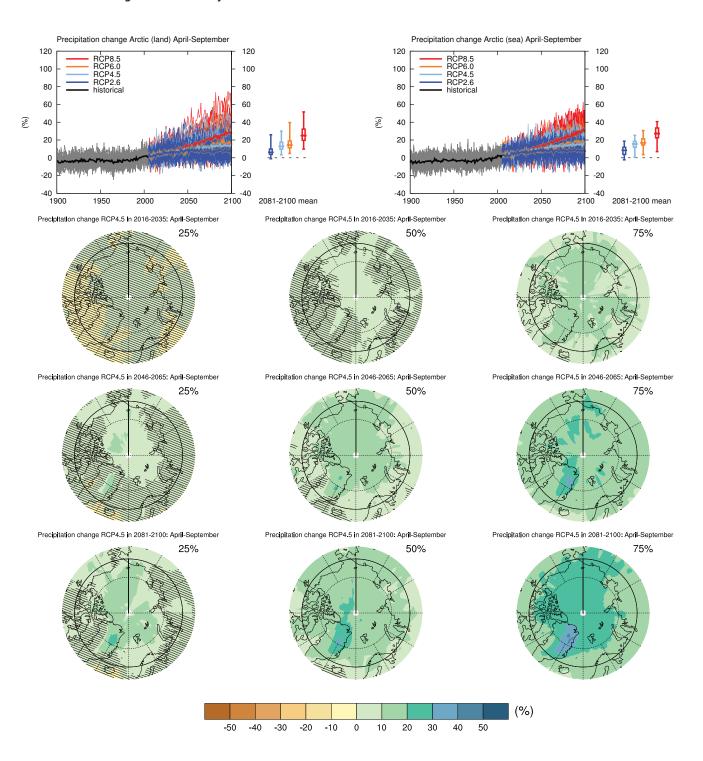
Sections 9.4.1.1, 9.6.1.1, 10.3.2.2, 11.3.2.3.1, Box 11.2, 12.4.5.2, 14.2 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.7 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points over the globe in April to September. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.2.2, 11.3.2.3.1, Box 11.2, 12.4.5.2, 14.2 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.8 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in the Arctic (67.5°N to 90°N) in December to February. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, 11.3.2.1.2, Box 11.2, 12.4.3.1, 14.8.2 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.9 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in the Arctic (67.5°N to 90°N) in June to August. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

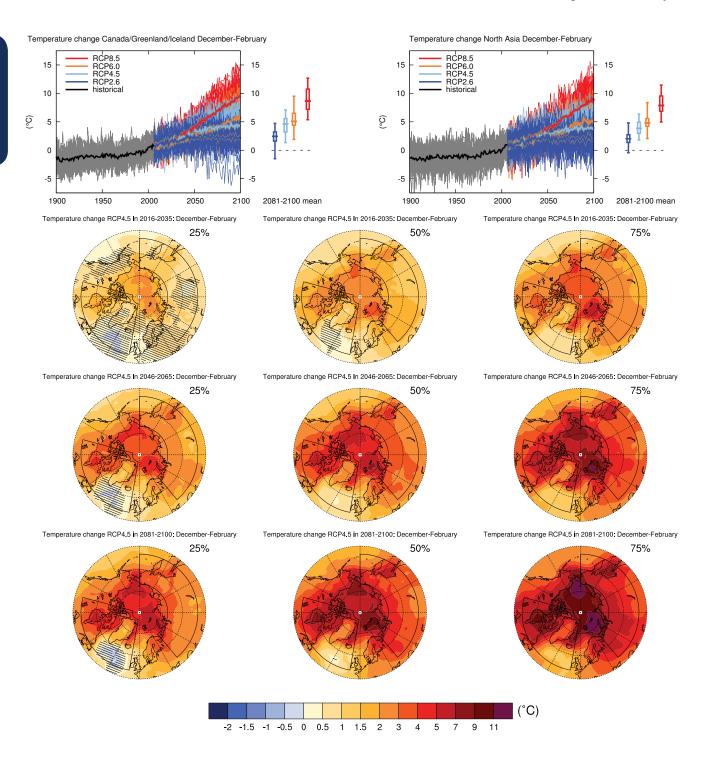
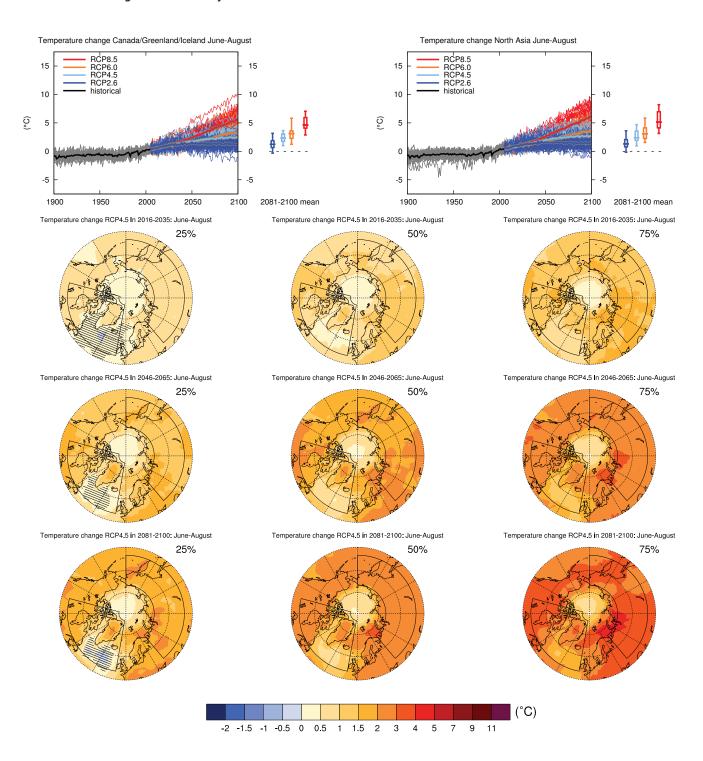
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, 11.3.2.1.2, Box 11.2, 12.4.3.1, 14.8.2 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

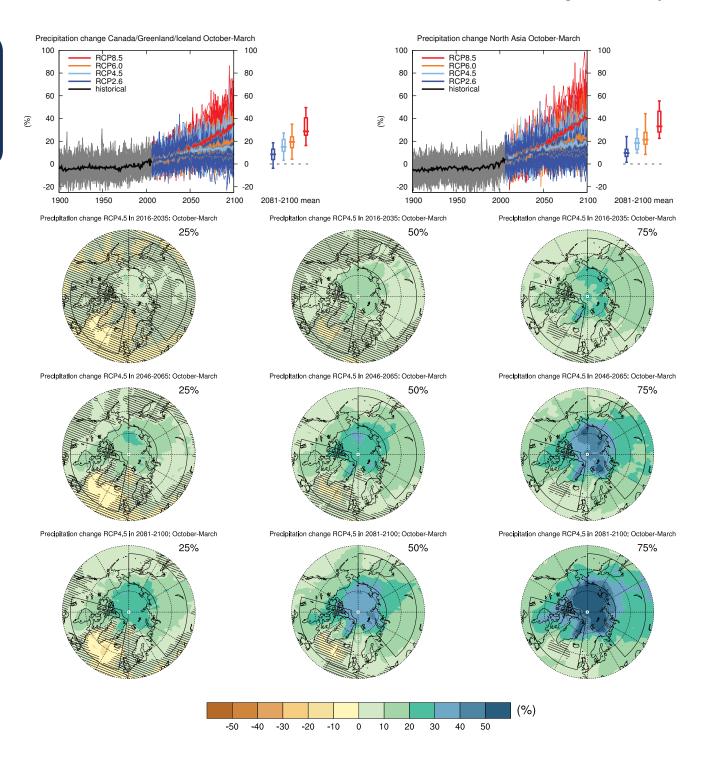
Figure Al.10 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in the Arctic (67.5°N to 90°N) in October to March. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 11.3.2.3.1, Box 11.2, 12.4.5.2, 14.8.2 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

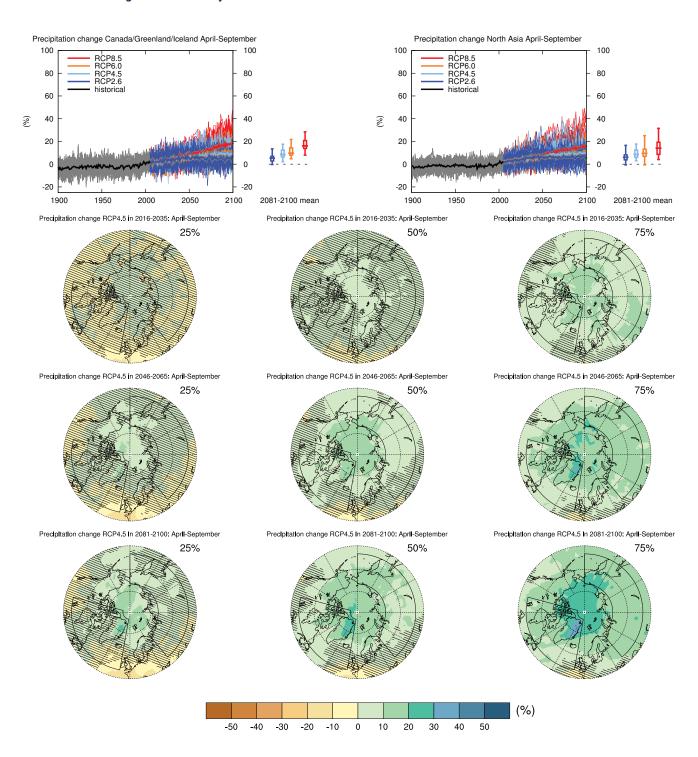
Figure Al.11 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in the Arctic (67.5°N to 90°N) in April to September. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 11.3.2.3.1, Box 11.2, 12.4.5.2, 14.8.2 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.12 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Canada/Greenland/Iceland (50°N to 85°N, 105°W to 10°W) in December to February. (Top right) Same for land grid points in North Asia (50°N to 70°N, 40°E to 180°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, 11.3.2.1.2, Box 11.2, 14.8.2, 14.8.8 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.13 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Canada/Greenland/Iceland (50°N to 85°N, 105°W to 10°W) in June to August. (Top right) Same for land grid points in North Asia (50°N to 70°N, 40°E to 180°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, 11.3.2.1.2, Box 11.2, 14.8.2, 14.8.8 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.14 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Canada/Greenland/Iceland (50°N to 85°N, 105°W to 10°W) in October to March. (Top right) Same for land grid points in North Asia (50°N to 70°N, 40°E to 180°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.2.2, 11.3.2.3.1, Box 11.2, 12.4.5.2, 14.8.2, 14.8.8 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.15 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Canada/Greenland/Iceland (50°N to 85°N, 105°W to 10°W) in April to September. (Top right) Same for land grid points in North Asia (50°N to 70°N, 40°E to 180°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.2.2, 11.3.2.3.1, Box 11.2, 12.4.5.2, 14.8.2, 14.8.8 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

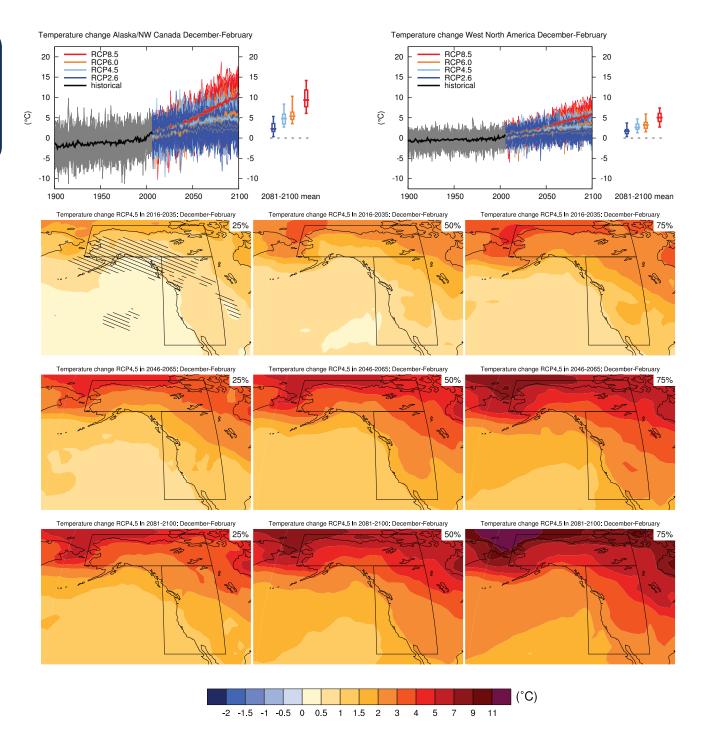
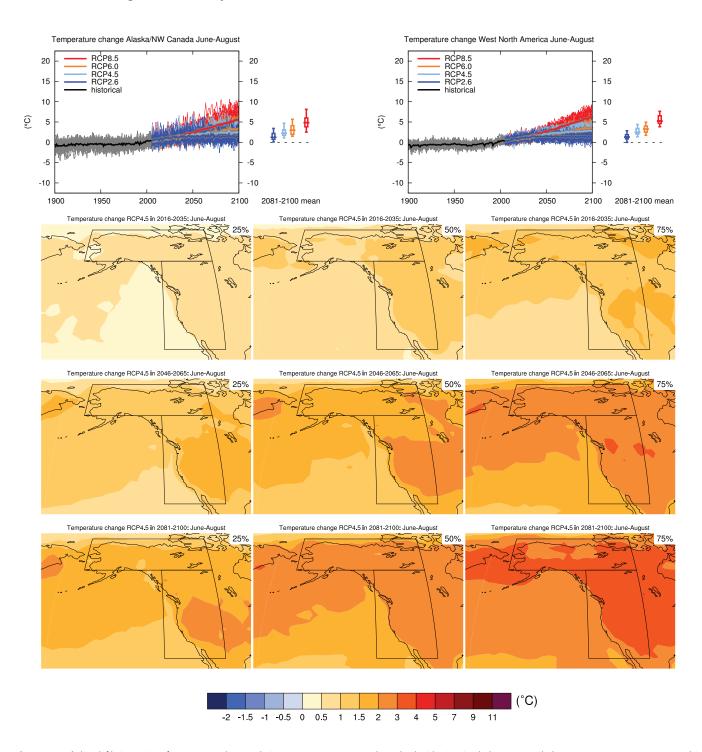
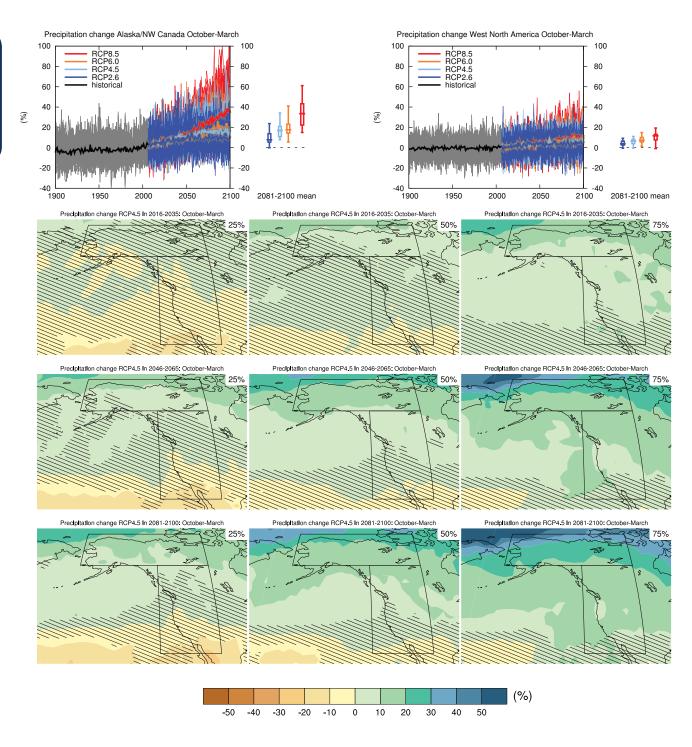
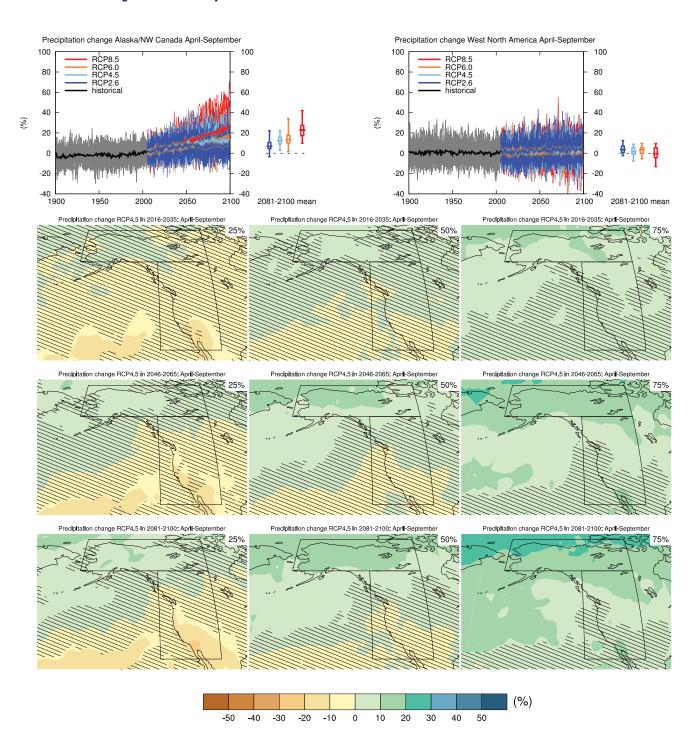


Figure AI.16 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Alaska/NW Canada (60°N to 72.6°N, 168°W to 105°W) in December to February. (Top right) Same for land grid points in West North America (28.6°N to 60°N, 130°W to 105°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.3 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.17 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Alaska/NW Canada (60°N to 72.6°N, 168°W to 105°W) in June to August. (Top right) Same for land grid points in West North America (28.6°N to 60°N, 130°W to 105°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.3 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.18 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Alaska/NW Canada (60°N to 72.6°N, 168°W to 105°W) in October to March. (Top right) Same for land grid points in West North America (28.6°N to 60°N, 130°W to 105°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.2.3.1, 14.8.3 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.19 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Alaska/NW Canada (60°N to 72.6°N, 168°W to 105°W) in April to September. (Top right) Same for land grid points in West North America (28.6°N to 60°N, 130°W to 105°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.2.3.1, 14.8.3 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

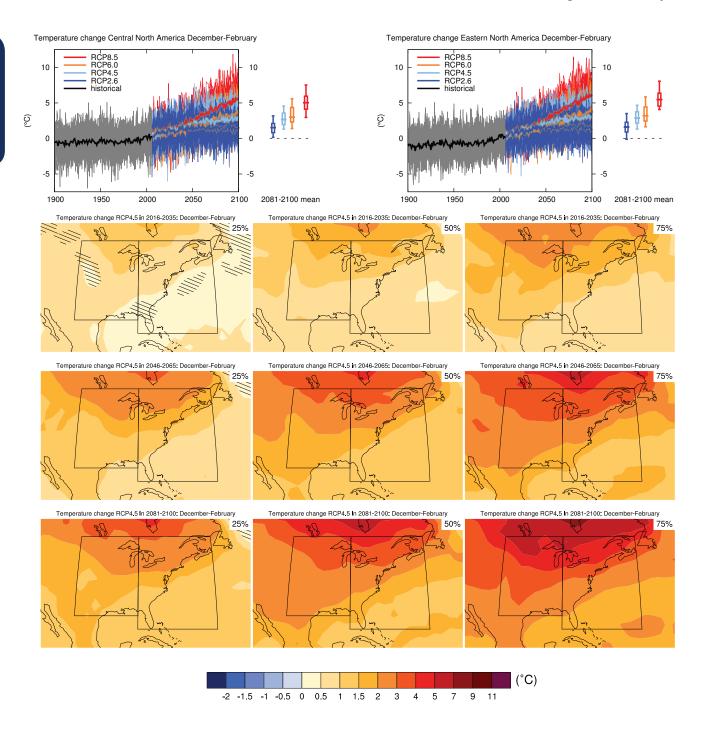
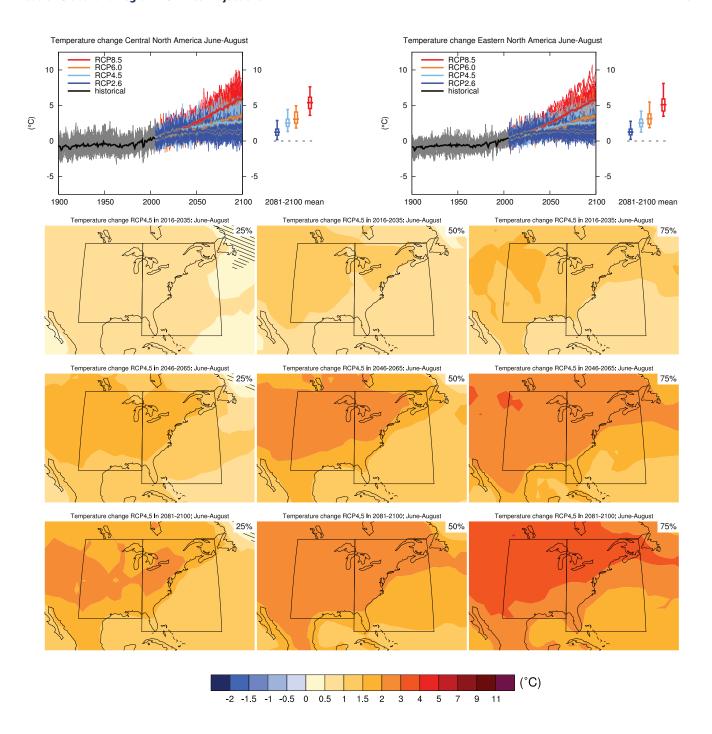



Figure AI.20 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Central North America (28.6°N to 50°N, 105°W) in December to February. (Top right) Same for land grid points in Eastern North America (25°N to 50°N, 85°W to 60°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

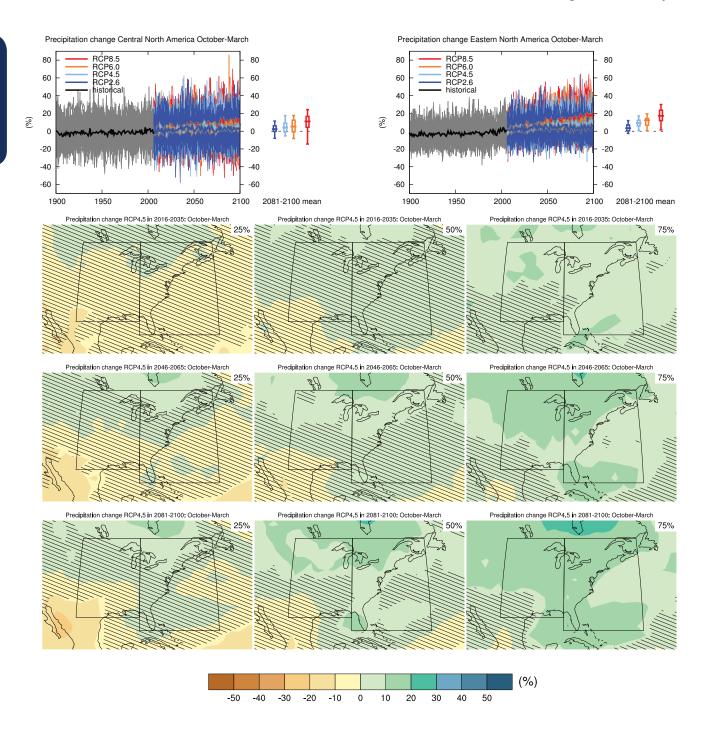
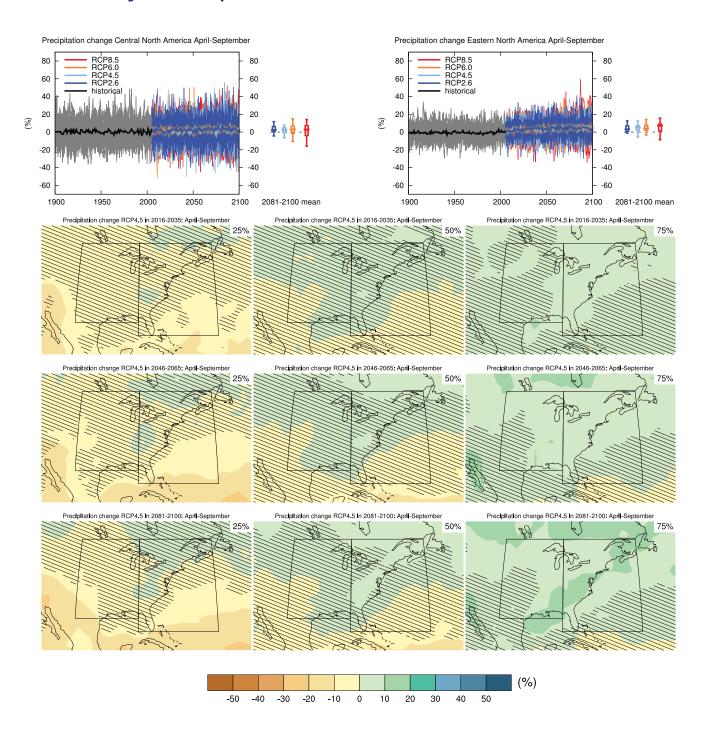
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.3 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

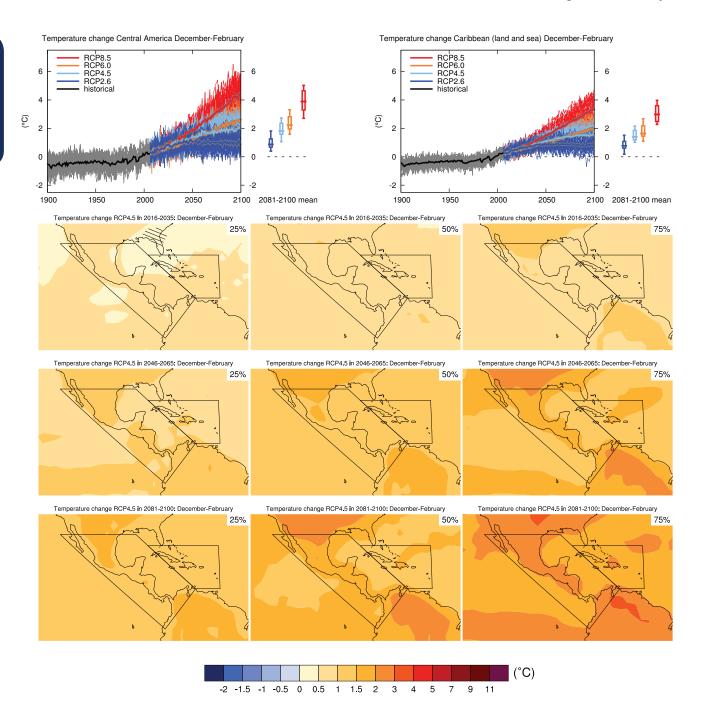
Figure Al.21 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Central North America (28.6°N to 50°N, 105°W to 85°W) in June to August. (Top right) Same for land grid points in Eastern North America (25°N to 50°N, 85°W to 60°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

(Below) Maps of temperature changes in 2016–2035, 2046–2065 and 2081–2100 with respect to 1986–2005

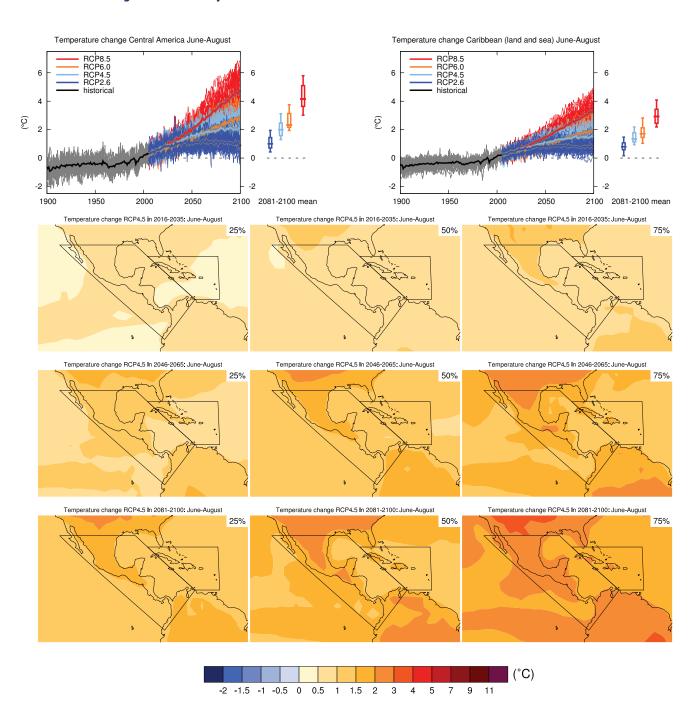
in the RCP4.5 scenario. For each point, the 25th, 50th and 75th percentiles of the distribution of the CMIP5 ensemble are shown; this includes both natural variability and intermodel spread. Hatching denotes areas where the 20-year mean differences of the percentiles are less than the standard deviation of model-estimated present-day natural variability of 20-year mean differences.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.3 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

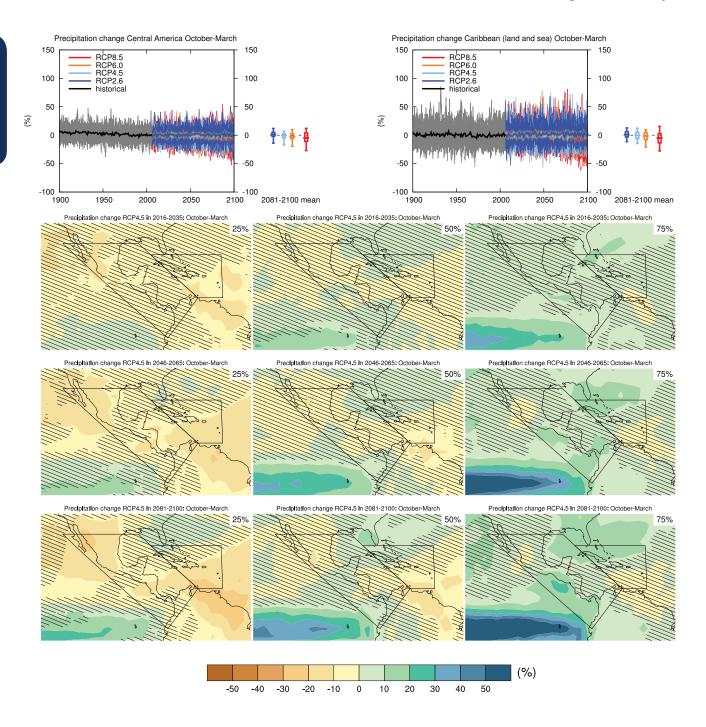




Figure Al.22 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Central North America (28.6°N to 50°N, 105°W to 85°W) in October to March. (Top right) Same for land grid points in Eastern North America (25°N to 50°N, 85°W to 60°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

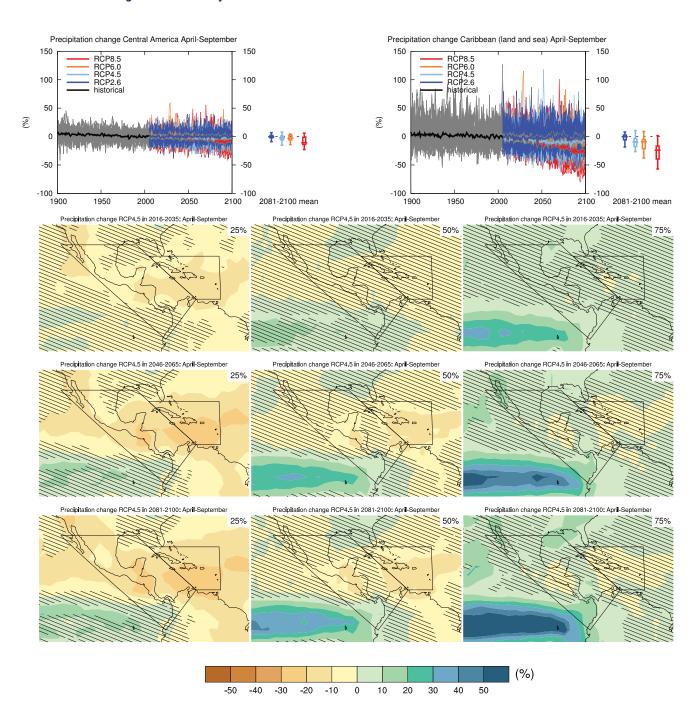
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.8.3 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.23 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Central North America (28.6°N to 50°N, 105°W to 85°W) in April to September. (Top right) Same for land grid points in Eastern North America (25°N to 50°N, 85°W to 60°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

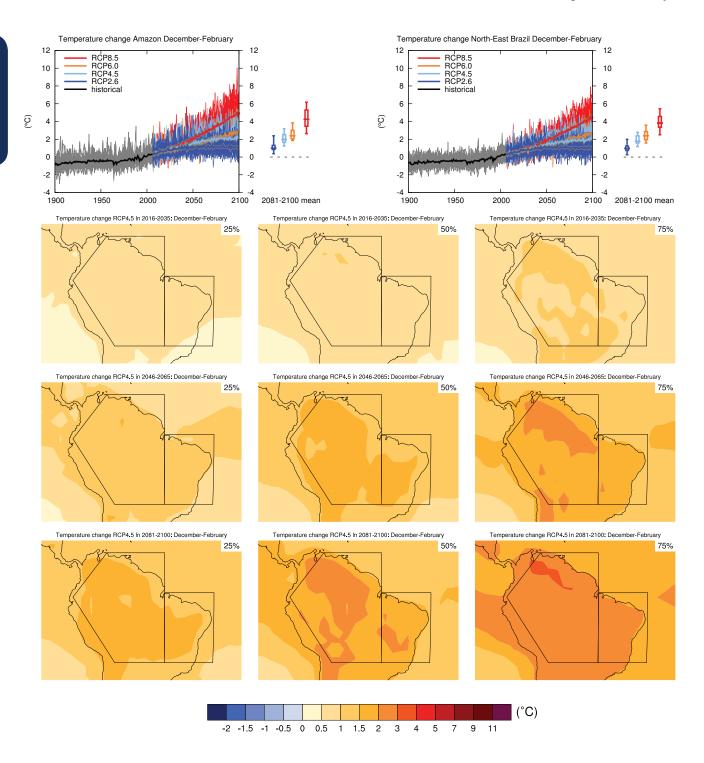
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.8.3 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.24 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Central America (68.8°W, 11.4°N; 79.7°W, 1.2°S; 116.3°W, 28.6°N; 90.3°W, 28.6°N) in December to February. (Top right) Same for all grid points in Caribbean (land and sea) (68.8°W, 11.4°N; 85.8°W, 25°N, 60°W, 25°N, 60°W, 11.44°N). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

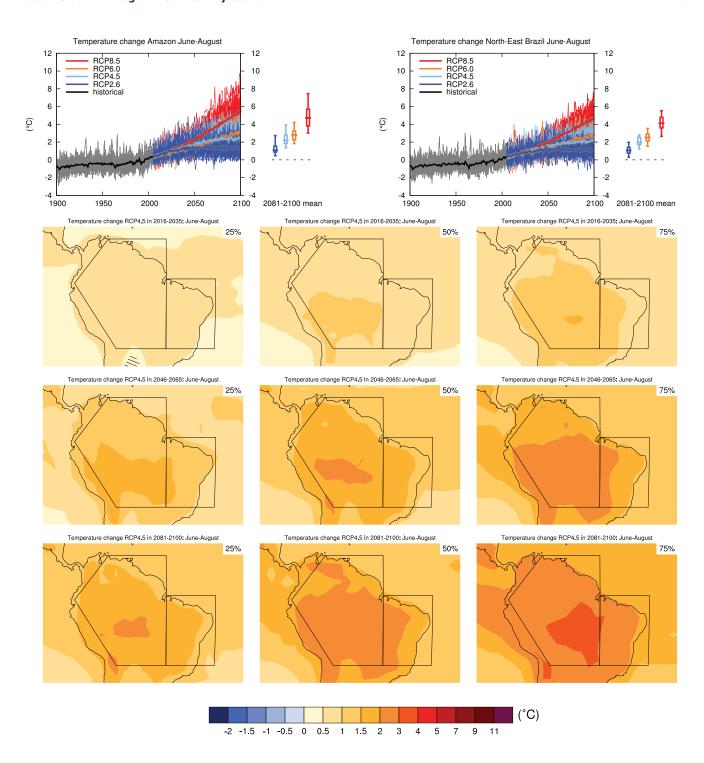
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.4 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.25 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Central America (68.8°W, 11.4°N; 79.7°W, 1.2°S; 116.3°W, 28.6°N; 90.3°W, 28.6°N) in June to August. (Top right) Same for all grid points in Caribbean (land and sea) (68.8°W, 11.4°N; 85.8°W, 25°N, 60°W, 25°N, 60°W, 11.44°N). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

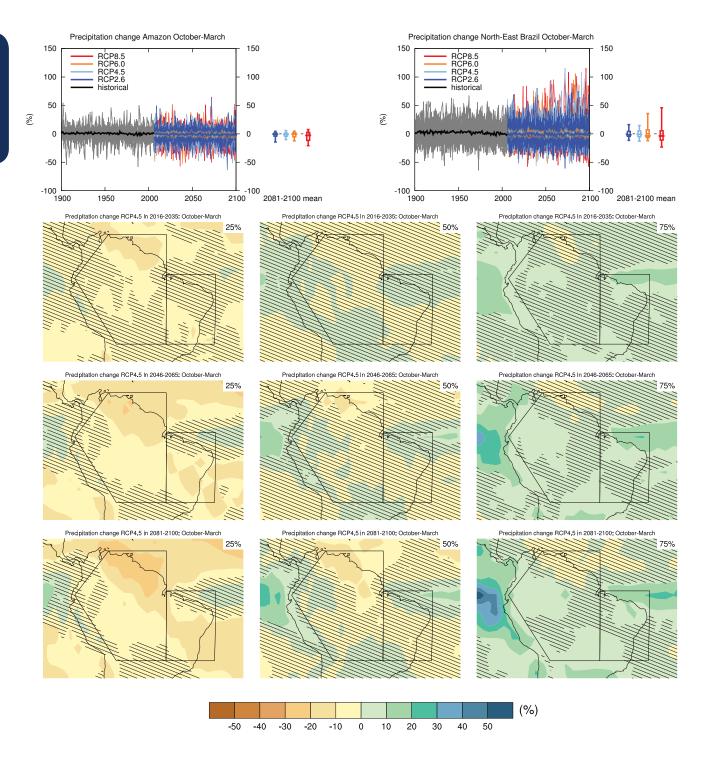
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.4 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.26 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Central America (68.8°W,11.4°N; 79.7°W, 1.2°S; 116.3°W,28.6°N; 90.3°W,28.6°N) in October to March. (Top right) Same for all grid points in Caribbean (land and sea) (68.8°W, 11.4°N; 85.8°W, 25°N, 60°W, 11.44°N). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

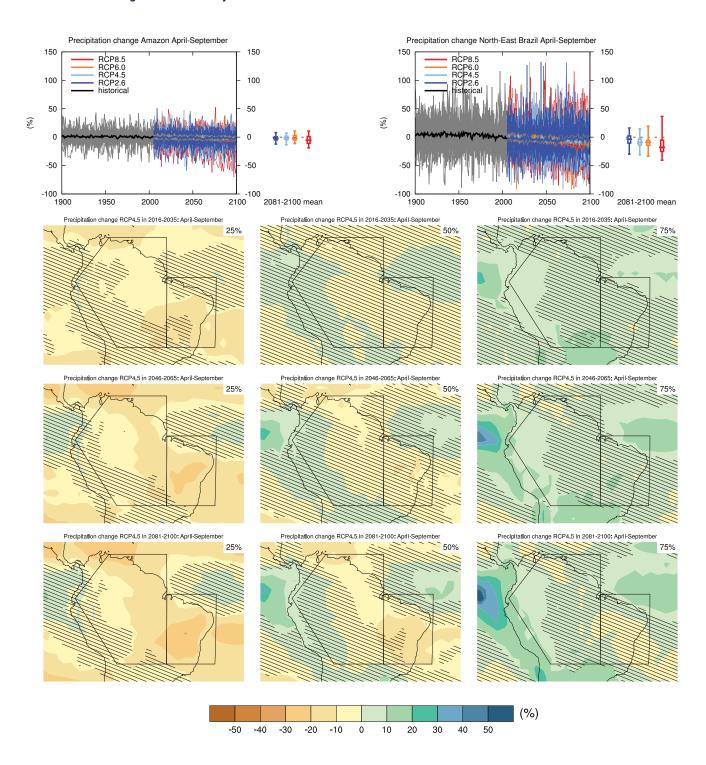
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.2.3.1, 14.8.4 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.27 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Central America (68.8°W, 11.4°N; 79.7°W, 1.2°S; 116.3°W, 28.6°N; 90.3°W, 28.6°N) in April to September. (Top right) Same for all grid points in Caribbean (land and sea) (68.8°W, 11.4°N; 85.8°W, 25°N, 60°W, 11.44°N). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

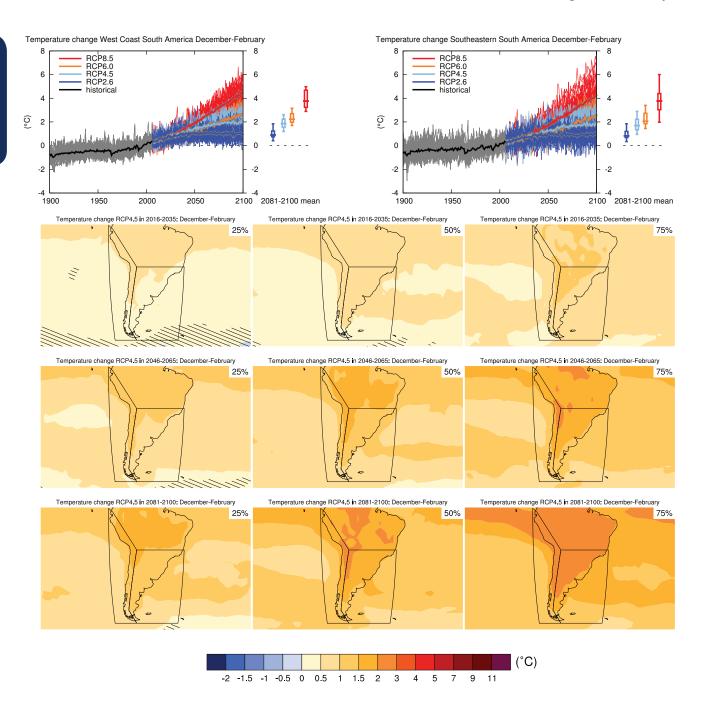
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.2.3.1, 14.8.4 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.28 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in the Amazon (20°S, 66.4°W; 1.24°S, 79.7°W; 11.44°N, 68.8°W; 11.44°N, 50°W; 20°S, 50°W) in December-February. (Top right) Same for land grid points in northeast Brazil (20°S to EQ, 50°W to 34°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

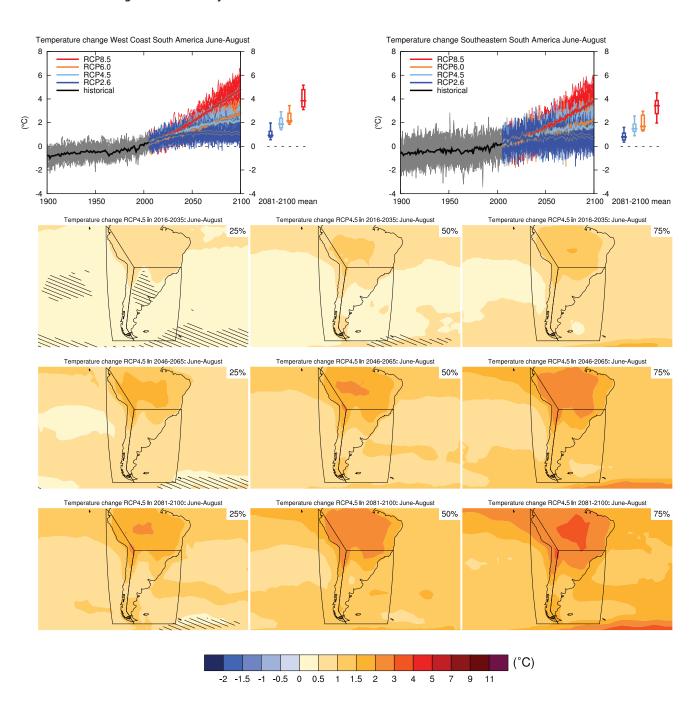
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.5 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.29 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in the Amazon (20°S, 66.4°W; 1.24°S, 79.7°W; 11.44°N, 68.8°W; 11.44°N, 50°W; 20°S, 50°W) in June to August. (Top right) Same for land grid points in northeast Brazil (20°S to EQ, 50°W to 34°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

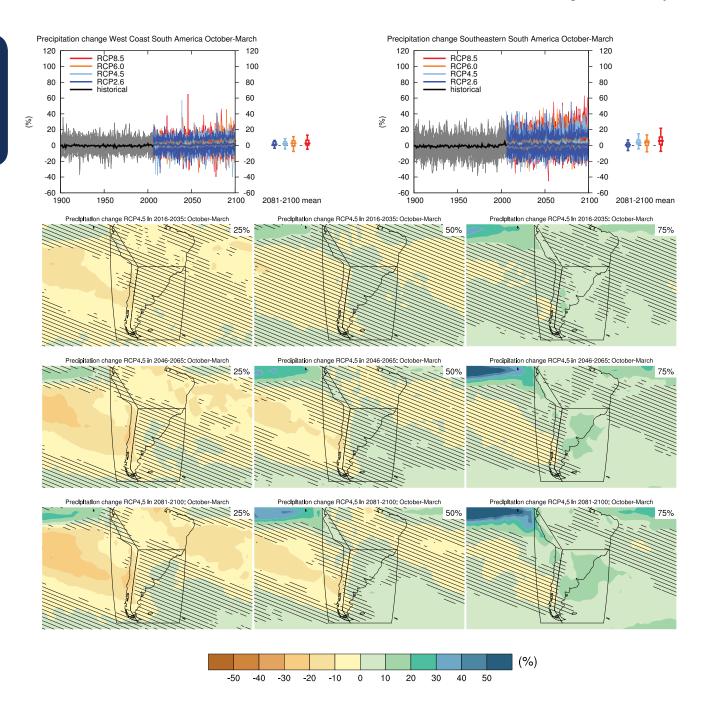
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.5 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.30 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in the Amazon (20°S, 66.4°W; 1.24°S, 79.7°W; 11.44°N, 68.8°W; 11.44°N, 50°W; 20°S, 50°W) in October to March. (Top right) Same for land grid points in northeast Brazil (20°S to EQ, 50°W to 34°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

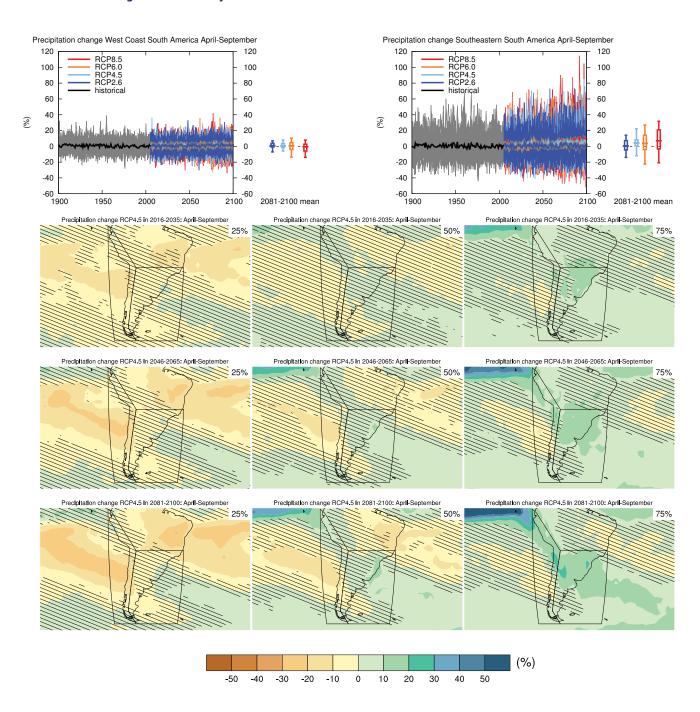
Sections 9.4.1.1, 9.6.1.1, 11.3.2.1.2, Box 11.2, 14.2.3.2, 14.8.5 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.31 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in the Amazon (20°S, 66.4°W; 1.24°S, 79.7°W; 11.44°N, 68.8°W; 11.44°N, 50°W; 20°S, 50°W) in April to September. (Top right) Same for land grid points in northeast Brazil (20°S to EQ, 50°W to 34°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

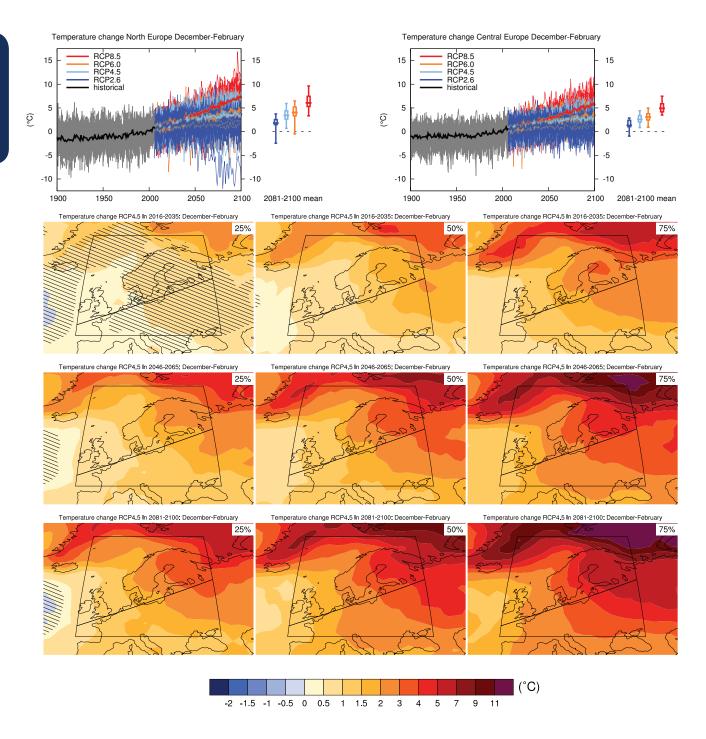
Sections 9.4.1.1, 9.6.1.1, 11.3.2.1.2, Box 11.2, 14.2.3.2, 14.8.5 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.32 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in the west coast of South America (79.7°W, 1.2°S; 66.4°W, 20°S; 72.1°W, 50°S; 67.3°W, 56.7°S; 82.0°W, 56.7°S; 82.2°W, 0.5°N) in December to February. (Top right) Same for land grid points in southeastern South America (39.4°W, 20°S; 39.4°W, 56.6°S; 67.3°W, 56.7°S; 72.1°W, 50°S; 66°W, 20°S). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

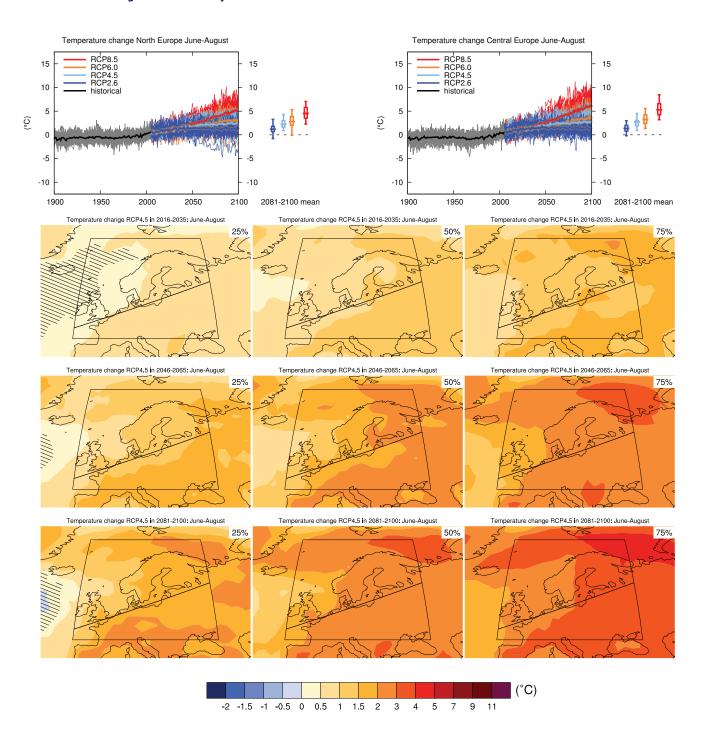
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.5 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.33 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in the west coast of South America (79.7°W, 1.2°S; 66.4°W, 20°S; 72.1°W, 50°S; 67.3°W, 56.7°S; 82.0°W, 56.7°S; 82.2°W, 0.5°N) in June to August. (Top right) Same for land grid points in southeastern South America (39.4°W, 20°S; 39.4°W, 56.6°S; 67.3°W, 56.7°S; 72.1°W, 50°S; 66°W, 20°S). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.5 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.34 [(Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in the west coast of South America (79.7°W, 1.2°S; 66.4°W, 20°S; 72.1°W, 50°S; 67.3°W, 56.7°S; 82.0°W, 56.7°S; 82.2°W, 0.5°N) in October to March. (Top right) Same for land grid points in southeastern South America (39.4°W, 20°S; 39.4°W, 56.6°S; 67.3°W, 56.7°S; 72.1°W, 50°S; 66°W, 20°S). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

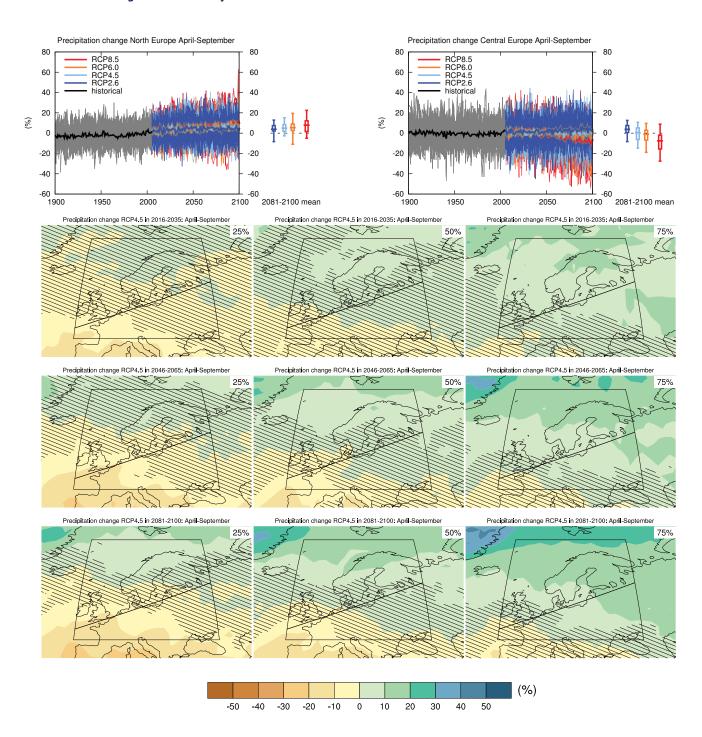
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.5 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.35 [(Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in the west coast of South America (79.7°W, 1.2°S; 66.4°W, 20°S; 72.1°W, 50°S; 67.3°W, 56.7°S; 82.0°W, 56.7°S; 82.2°W, 0.5°N) in April to September. (Top right) Same for land grid points in southeastern South America (39.4°W, 20°S; 39.4°W, 56.6°S; 67.3°W, 56.7°S; 72.1°W, 50°S; 66°W, 20°S). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

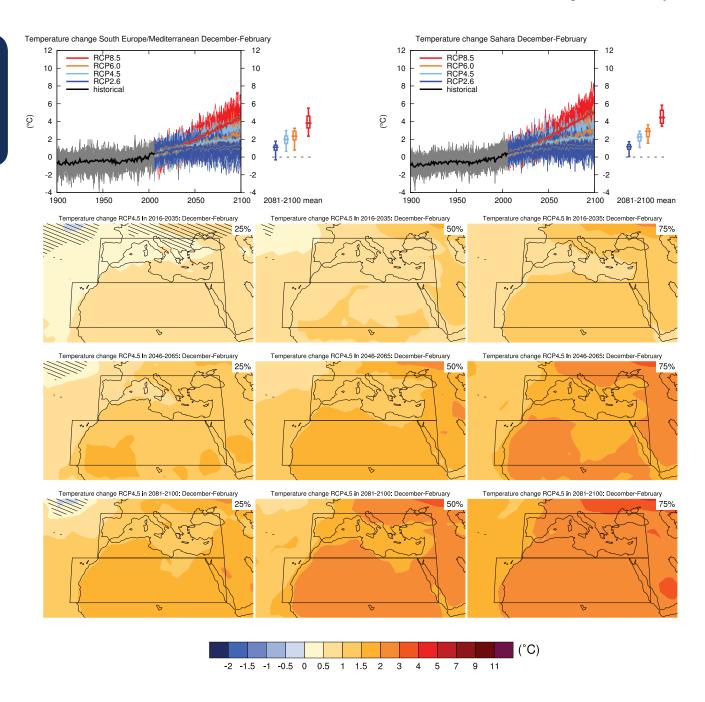
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.5 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.36 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in North Europe (10°W, 48°N; 10°W, 75°N; 40°E, 61.3°N) in December to February. (Top right) Same for land grid points in Central Europe (10°W, 45°N; 10°W, 48°N; 40°E, 61.3°N; 40°E, 45°N). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

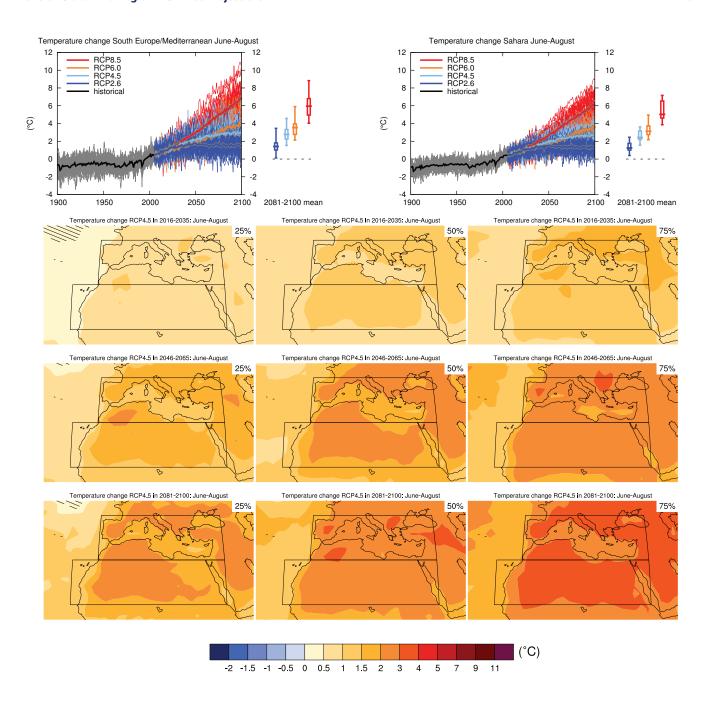
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, 10.3, Box 11.2, 14.8.6 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.37 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in North Europe (10°W, 48°N; 10°W, 75°N; 40°E, 61.3°N) in June to August. (Top right) Same for land grid points in Central Europe (10°W, 45°N; 10°W, 48°N; 40°E, 61.3°N). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

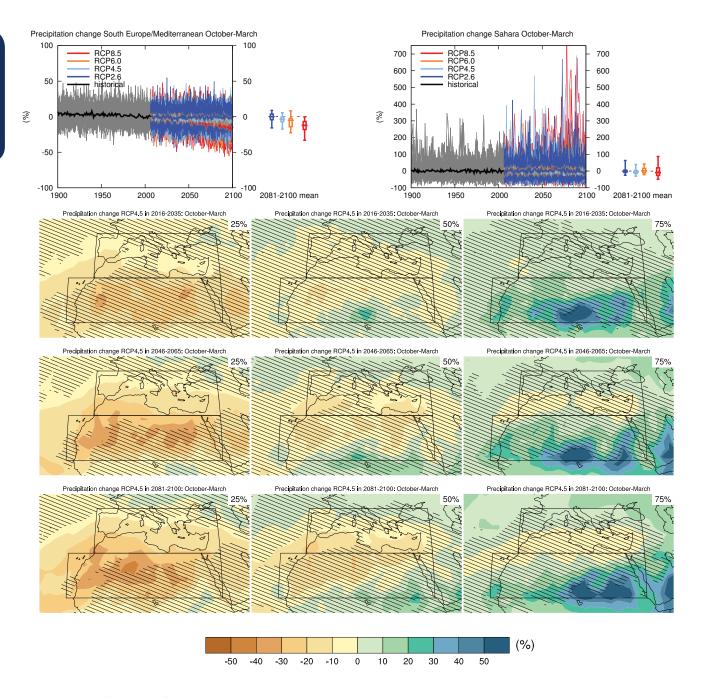
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, 10.3, Box 11.2, 14.8.6 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.38 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in North Europe (10°W, 48°N; 10°W, 75°N; 40°E, 75°N; 40°E, 61.3°N) in October to March. (Top right) Same for land grid points in Central Europe (10°W, 45°N; 10°W, 48°N; 40°E, 61.3°N; 40°E, 45°N). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

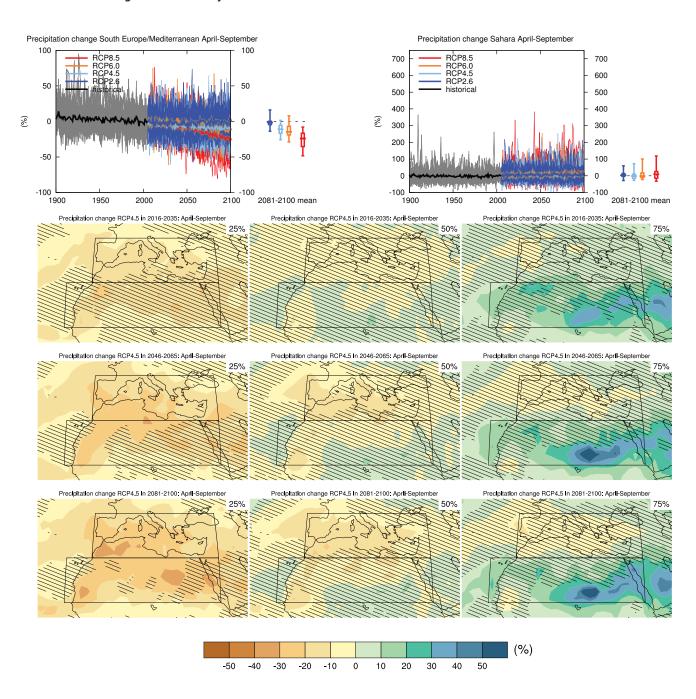
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.6 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.39 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in North Europe (10°W, 48°N; 10°W, 75°N; 40°E, 75°N; 40°E, 61.3°N) in April to September. (Top right) Same for land grid points in Central Europe (10°W, 45°N; 10°W, 48°N; 40°E, 61.3°N; 40°E, 45°N). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

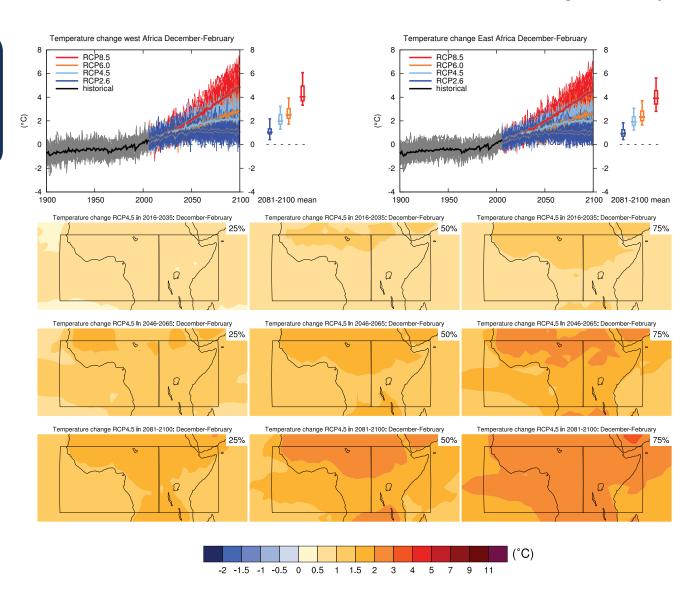
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.6 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.40 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in the region South Europe/Mediterranean (30°N to 45°N, 10°W to 40°E) in December to February. (Top right) Same for land grid points in the Sahara (15°N to 30°N, 20°W to 40°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

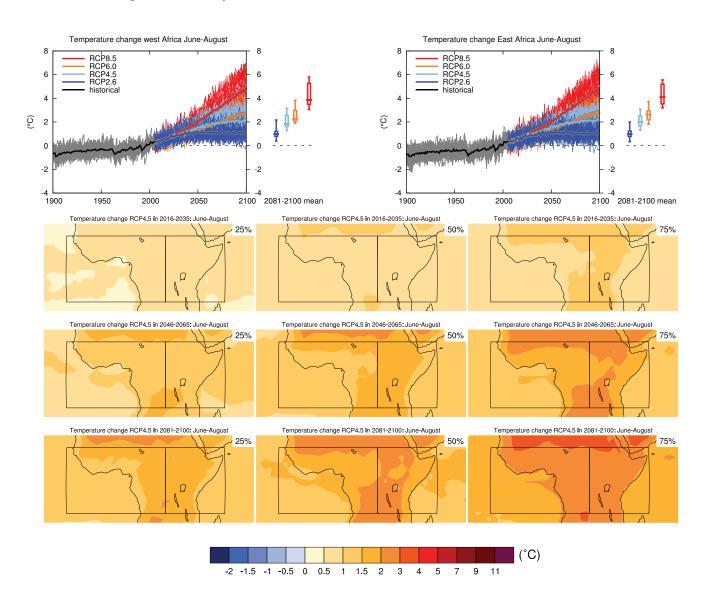
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.6, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.41 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in the region South Europe/Mediterranean (30°N to 45°N, 10°W to 40°E) in June to August. (Top right) Same for land grid points in the Sahara (15°N to 30°N, 20°W to 40°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

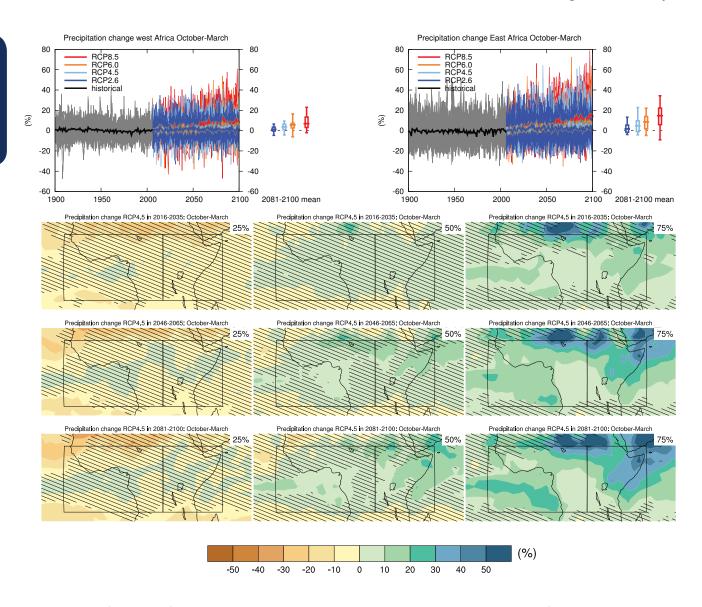
Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.6, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.42 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in the region South Europe/Mediterranean (30°N to 45°N, 10°W to 40°E) in October to March. (Top right) Same for land grid points in the Sahara (15°N to 30°N, 20°W to 40°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios. Note different scales.

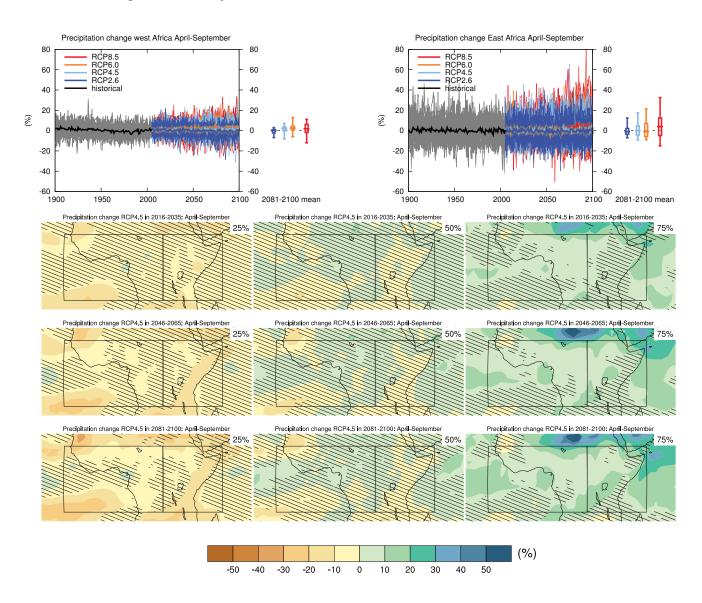
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.6, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.43 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in the region South Europe/Mediterranean (30°N to 45°N, 10°W to 40°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios. Note different scales.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.6, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.44 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in West Africa (11.4°S to 15°N, 20°W to 25°E) in December to February. (Top right) Same for land grid points in East Africa (11.3°S to 15°N, 25°E to 52°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.45 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in West Africa (11.4°S to 15°N, 20°W to 25°E) in June to August. (Top right) Same for land grid points in East Africa (11.3°S to 15°N, 25°E to 52°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.46 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in West Africa (11.4°S to 15°N, 20°W to 25°E) in October to March. (Top right) Same for land grid points in East Africa (11.3°S to 15°N, 25°E to 52°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 11.3.2.1.2, Box 11.2, 12.4.5.2, 14.2.4, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure AI.47 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in West Africa (11.4°S to 15°N, 20°W to 25°E) in April to September. (Top right) Same for land grid points in East Africa (11.3°S to 15°N, 25°E to 52°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 11.3.2.1.2, Box 11.2, 12.4.5.2, 14.2.4, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

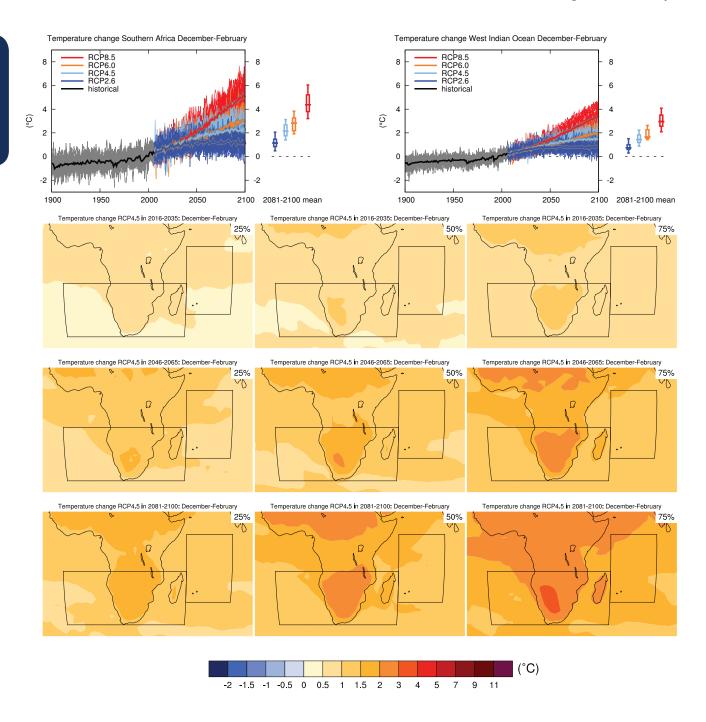
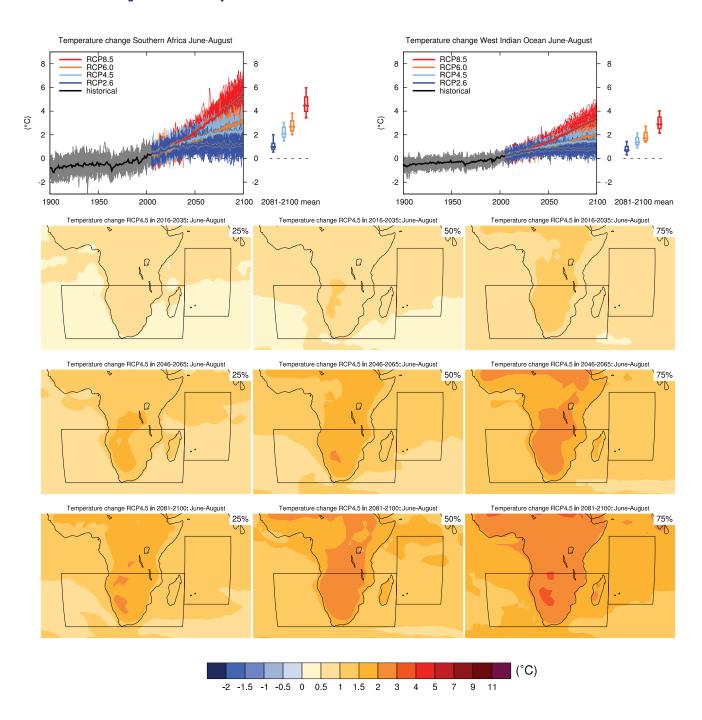



Figure A1.48 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Southern Africa (35°S to 11.4°S, 10°W to 52°E) in December to February. (Top right) Same for sea grid points in the West Indian Ocean (25°S to 5°N, 52°E to 75°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure AI.49 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Southern Africa (35°S to 11.4°S, 10°W to 52°E) in June to August. (Top right) Same for sea grid points in the West Indian Ocean (25°S to 5°N, 52°E to 75°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

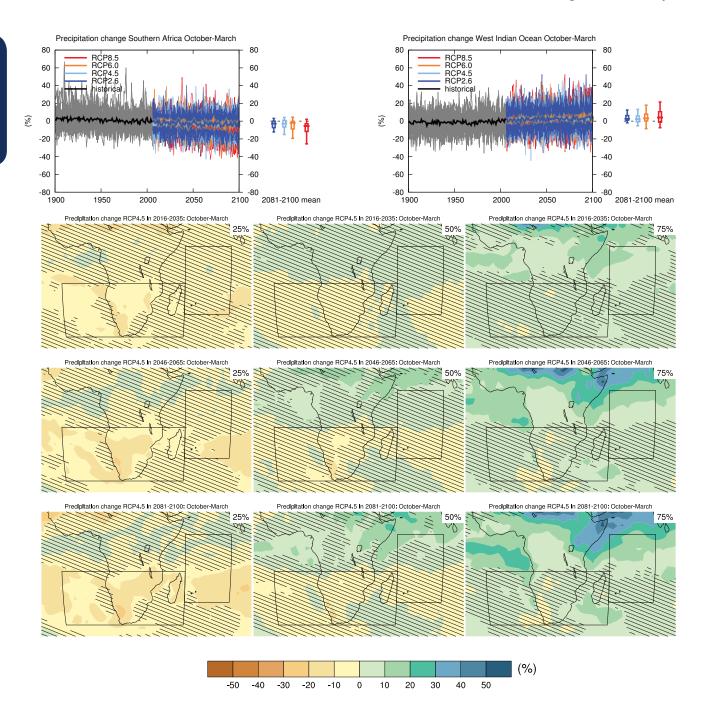
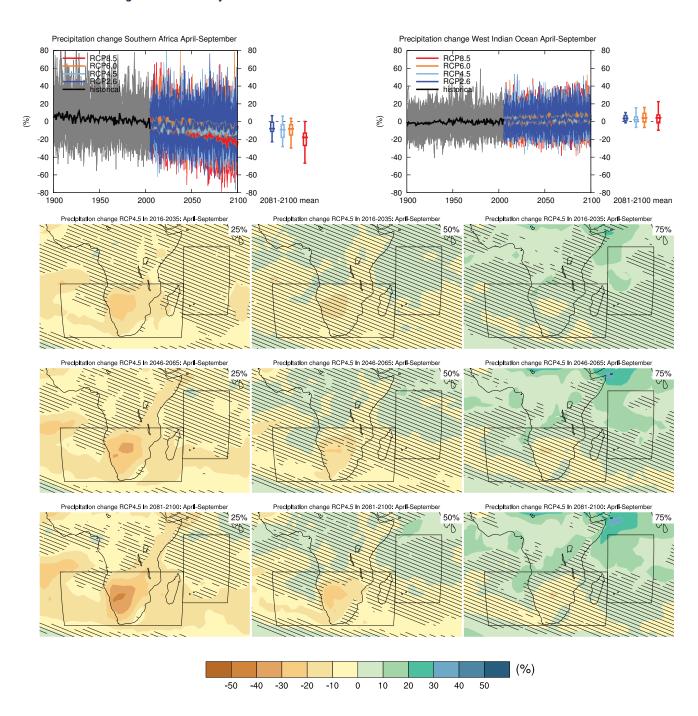
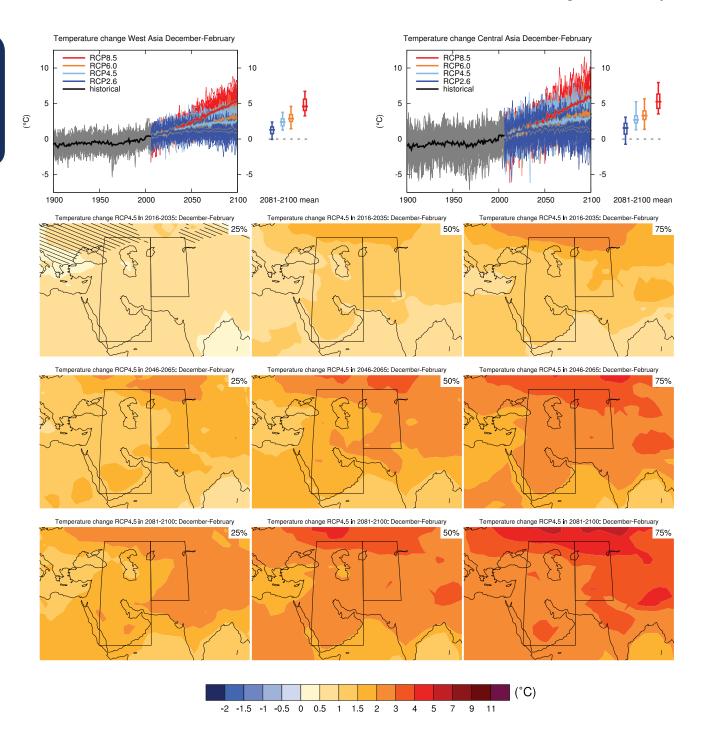
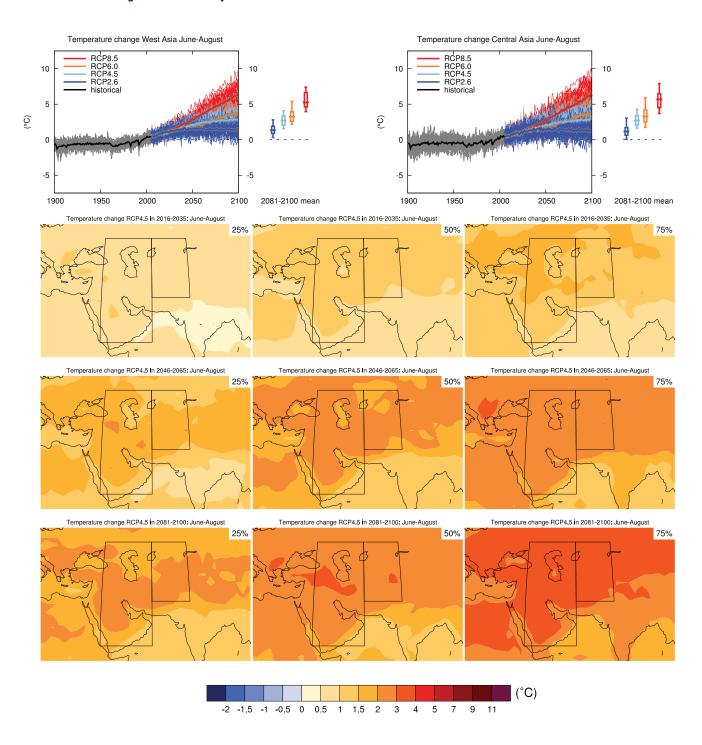



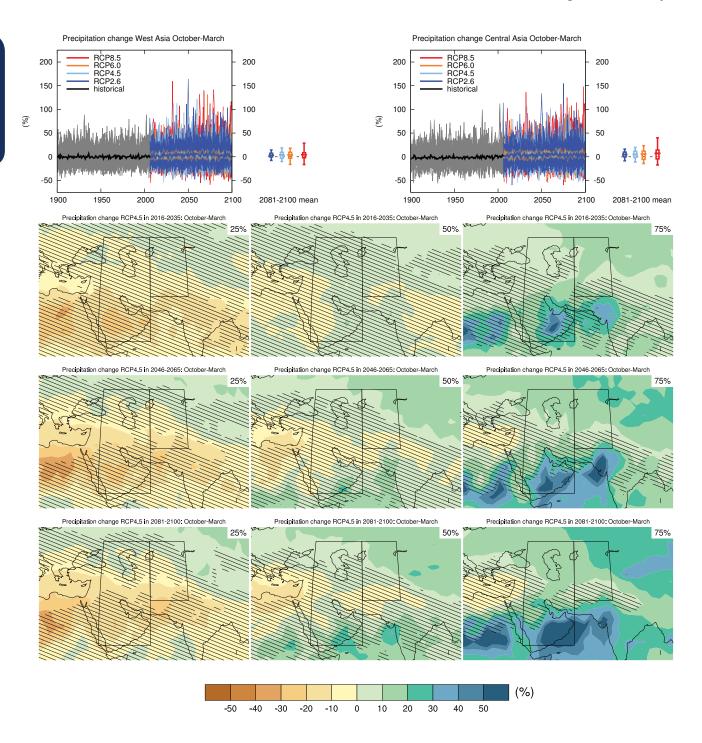
Figure AI.50 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Southern Africa (35°S to 11.4°S, 10°W to 52°E) in October to March. (Top right) Same for sea grid points in the West Indian Ocean (25°S to 5°N, 52°E to 75°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure AI.51 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Southern Africa (35°S to 11.4°S, 10°W to 52°E) in April to September. (Top right) Same for sea grid points in the West Indian Ocean (25°S to 5°N, 52°E to 75°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.7 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure A1.52 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in West Asia (15°N to 50°N, 40°E to 60°E) in December to February. (Top right) Same for land grid points in Central Asia (30°N to 50°N, 60°E to 75°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.8, 14.8.10 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.53 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in West Asia (15°N to 50°N, 40°E to 60°E) in June to August. (Top right) Same for land grid points in Central Asia (30°N to 50°N, 60°E to 75°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.8, 14.8.10 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.54 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in West Asia (15°N to 50°N, 40°E to 60°E) in October to March. (Top right) Same for land grid points in Central Asia (30°N to 50°N, 60°E to 75°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.8, 14.8.10 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

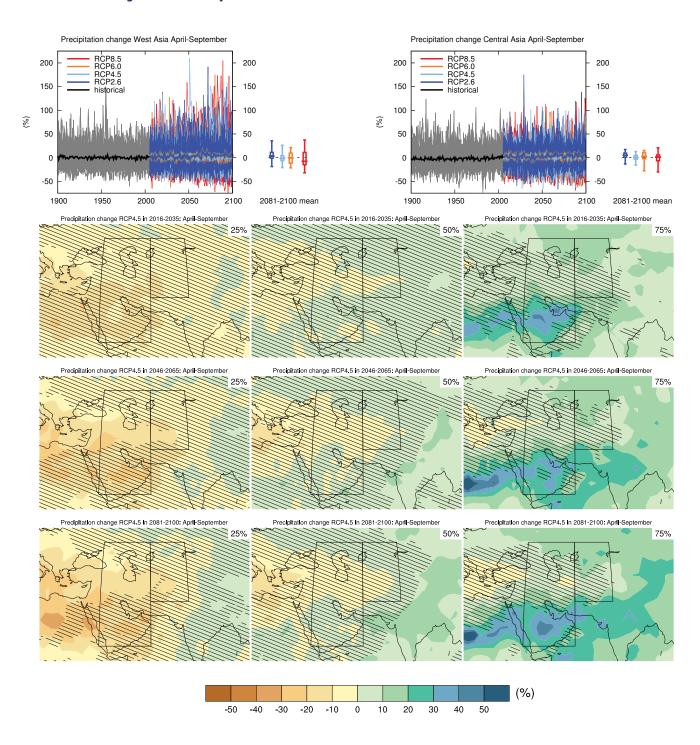
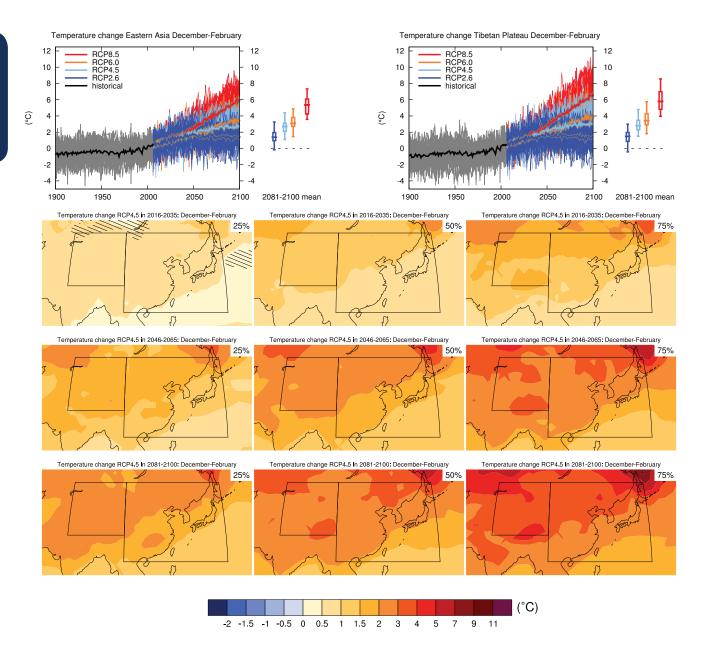
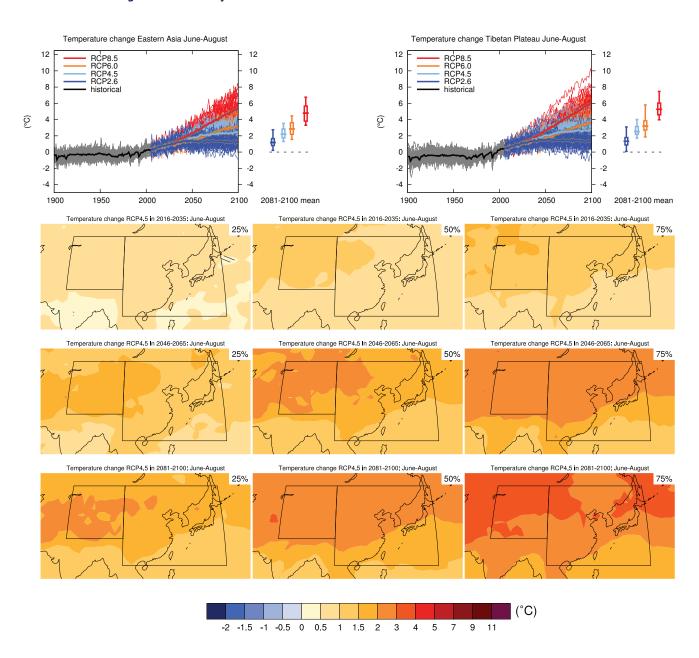
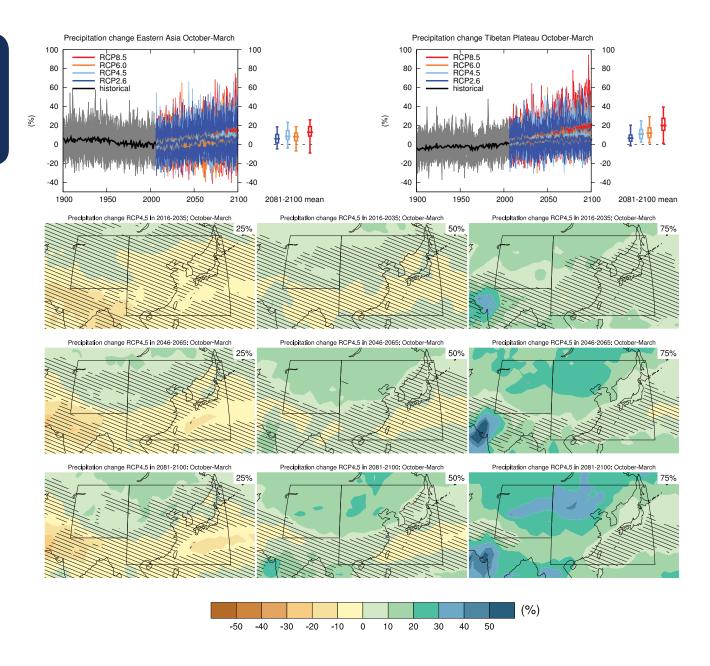


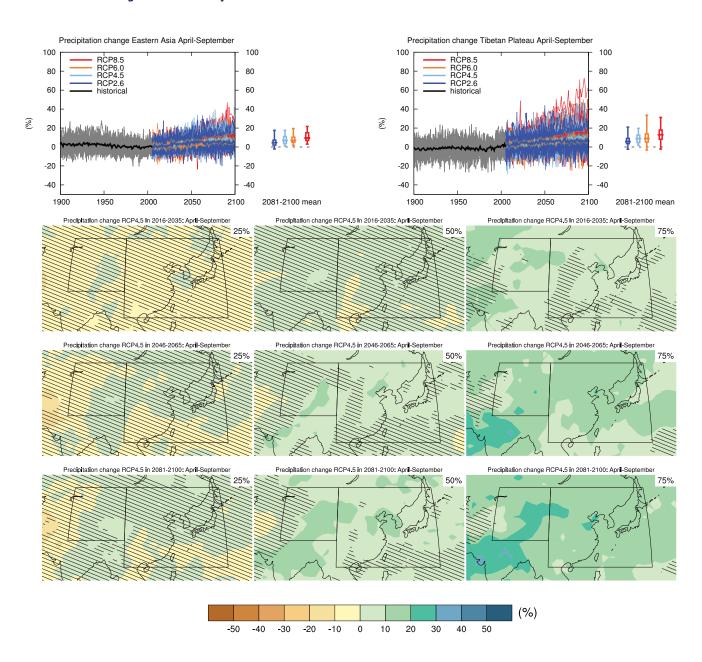
Figure Al.55 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in West Asia (15°N to 50°N, 40°E to 60°E) in April to September. (Top right) Same for land grid points in Central Asia (30°N to 50°N, 60°E to 75°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 12.4.5.2, 14.8.8, 14.8.10 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.56 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Eastern Asia (20°N to 50°N, 100°E to 145°E) in December to February. (Top right) Same for land grid points on the Tibetan Plateau (30°N to 50°N, 75°E to 100°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.8, 14.8.9 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.57 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Eastern Asia (20°N to 50°N, 100°E to 145°E) in June to August. (Top right) Same for land grid points on the Tibetan Plateau (30°N to 50°N, 75°E to 100°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.8, 14.8.9 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure AI.58 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Eastern Asia (20°N to 50°N, 100°E to 145°E) in October to March. (Top right) Same for land grid points on the Tibetan Plateau (30°N to 50°N, 75°E to 100°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.2.2.2, 14.8.8, 14.8.9 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure AI.59 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Eastern Asia (20°N to 50°N, 100°E to 145°E) in April to September. (Top right) Same for land grid points on the Tibetan Plateau (30°N to 50°N, 75°E to 100°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.2.2.2, 14.8.8, 14.8.9 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

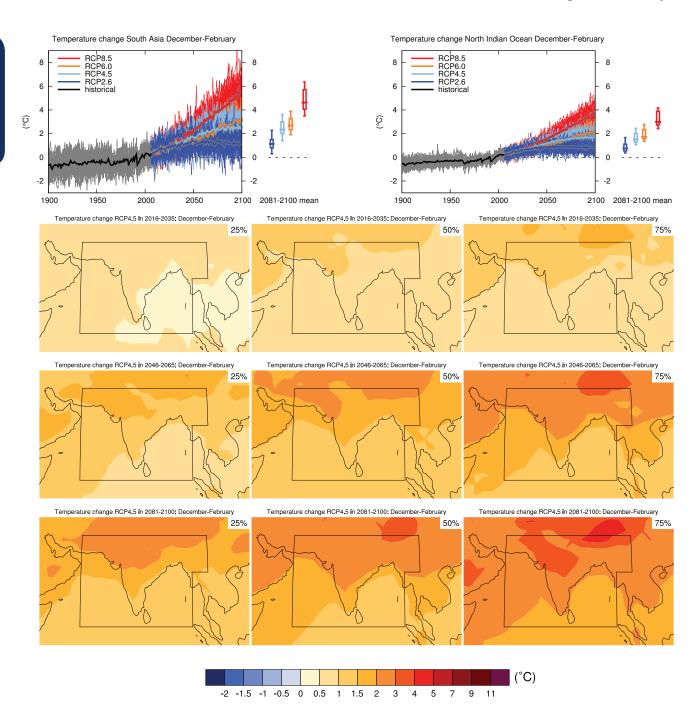
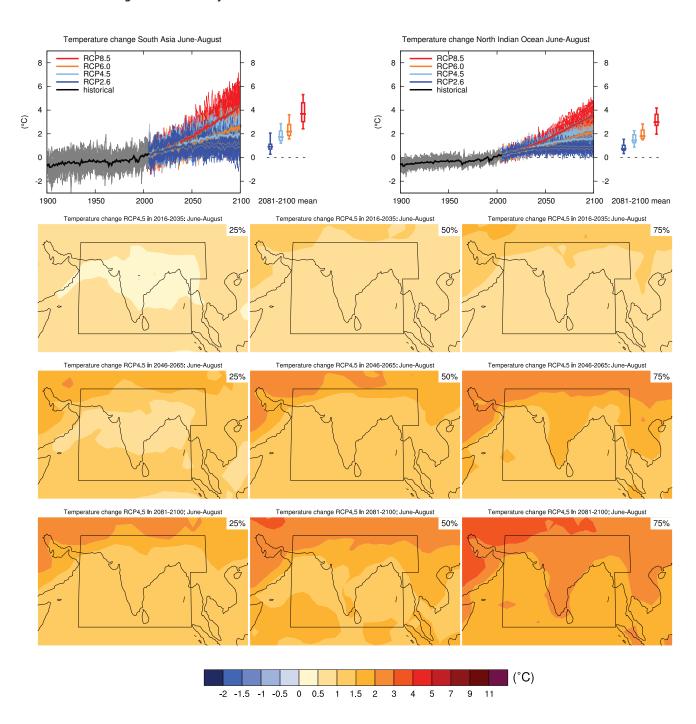
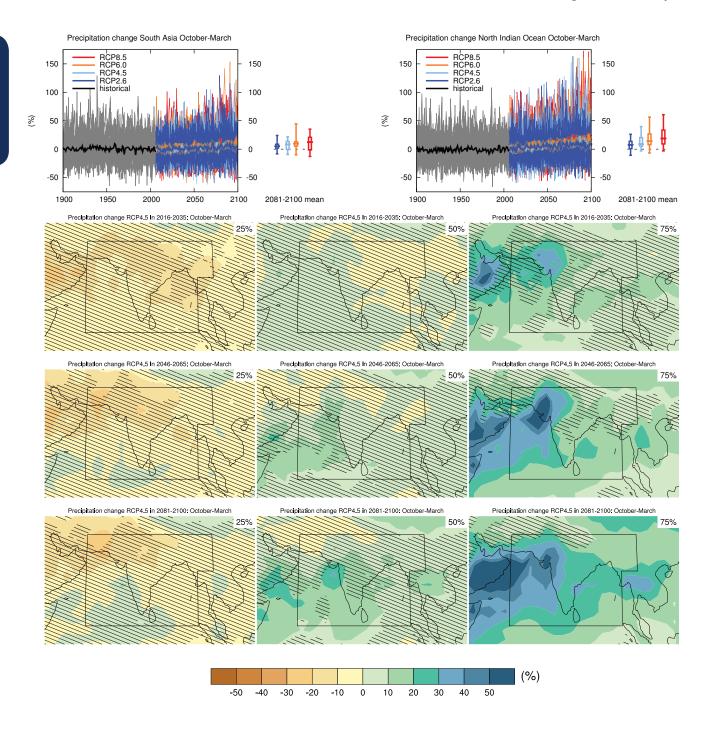
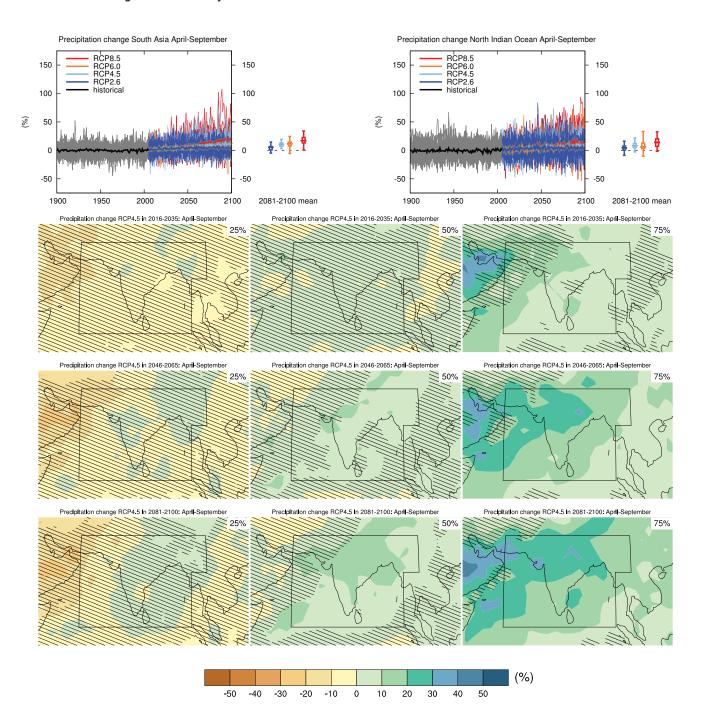



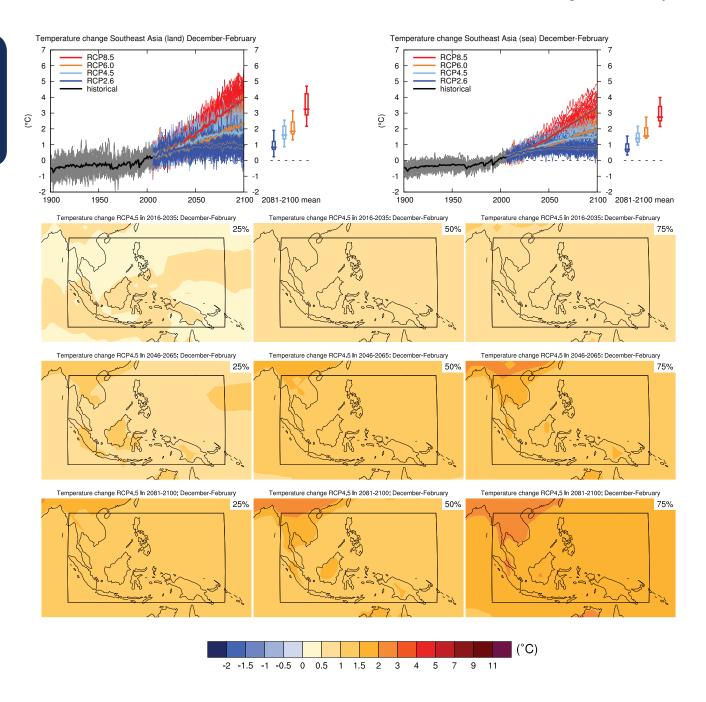
Figure Al.60 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in South Asia (60°E, 5°N; 60°E, 30°N; 100°E, 30°N; 100°E, 20°E; 95°E, 20°N; 95°E, 5°N) in December to February. (Top right) Same for sea grid points in the North Indian Ocean (5°N to 30°N, 60°E to 95°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.11 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

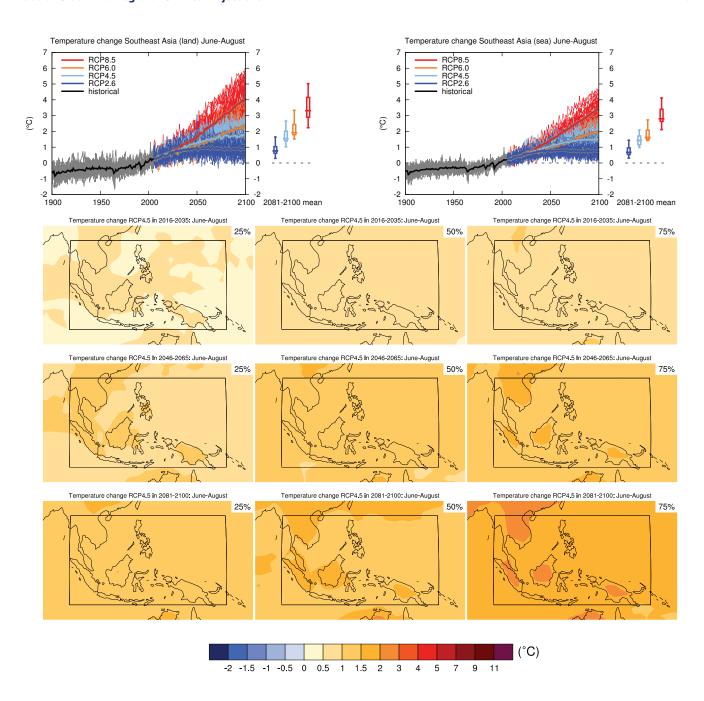
Figure Al.61 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in South Asia (60°E, 5°N); 60°E, 30°N; 100°E, 30°N; 100°E, 20°E; 95°E, 20°N; 95°E, 5°N) in June to August. (Top right) Same for sea grid points in the North Indian Ocean (5°N to 30°N, 60°E to 95°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.11 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

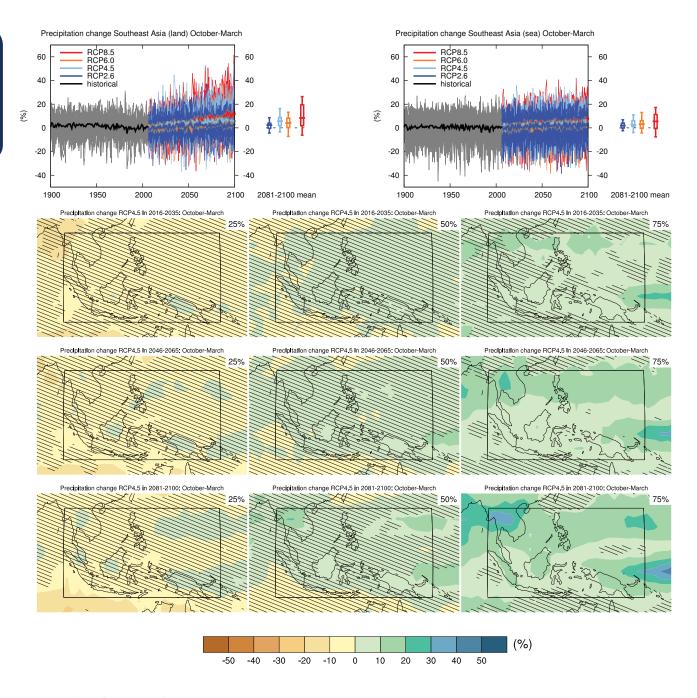




Figure A1.62 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in South Asia (60°E, 5°N; 60°E, 30°N; 100°E, 30°N; 100°E, 20°E; 95°E, 20°N; 95°E, 5°N) in October to March. (Top right) Same for sea grid points in the North Indian Ocean (5°N to 30°N, 60°E to 95°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

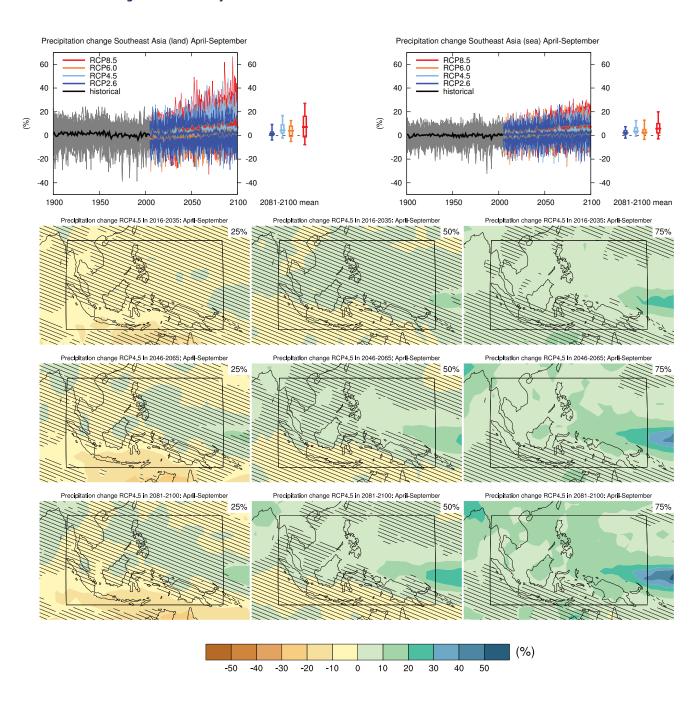
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.2.2.1, 14.8.11 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.63 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in South Asia (60°E, 5°N; 60°E, 30°N; 100°E, 30°N; 100°E, 20°E; 95°E, 20°N; 95°E, 20°N; 95°E, 5°N) in April to September. (Top right) Same for sea grid points in the North Indian Ocean (5°N to 30°N, 60°E to 95°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.2.2.1, 14.8.11 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.64 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Southeast Asia (10°S to 20°N, 95°E to 155°E) in December to February. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.12 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.65 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Southeast Asia (10°S to 20°N, 95°E to 155°E) in June to August. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.12 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.66 [(Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Southeast Asia (10°S to 20°N, 95°E to 155°E) in October to March. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.2.2.3, 14.2.2.5, 14.8.12 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.67 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Southeast Asia (10°S to 20°N, 95°E to 155°E) in April to September. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.2.2.3, 14.2.2.5, 14.8.12 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

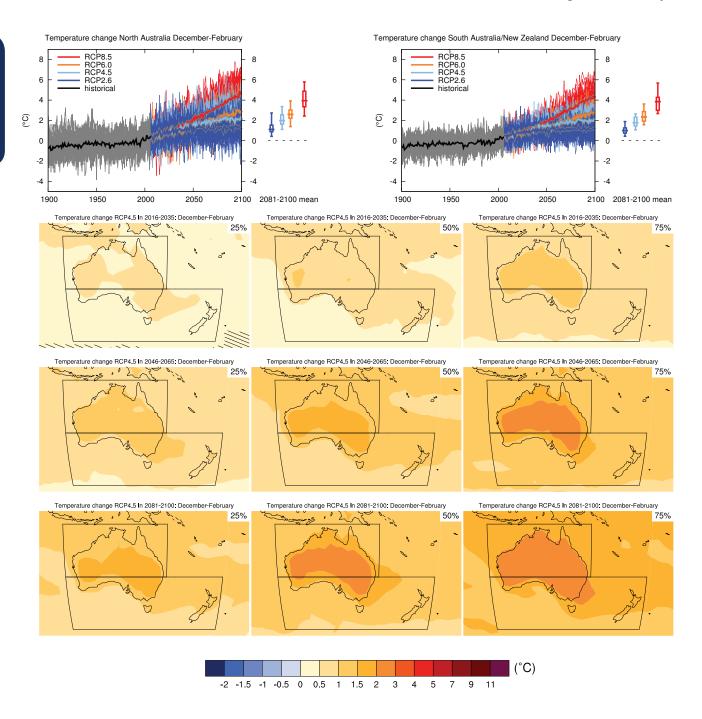
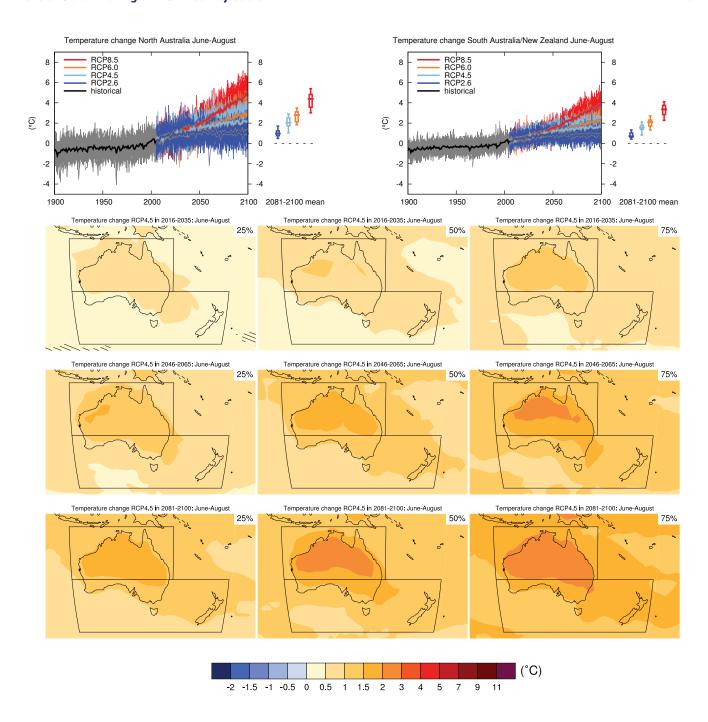
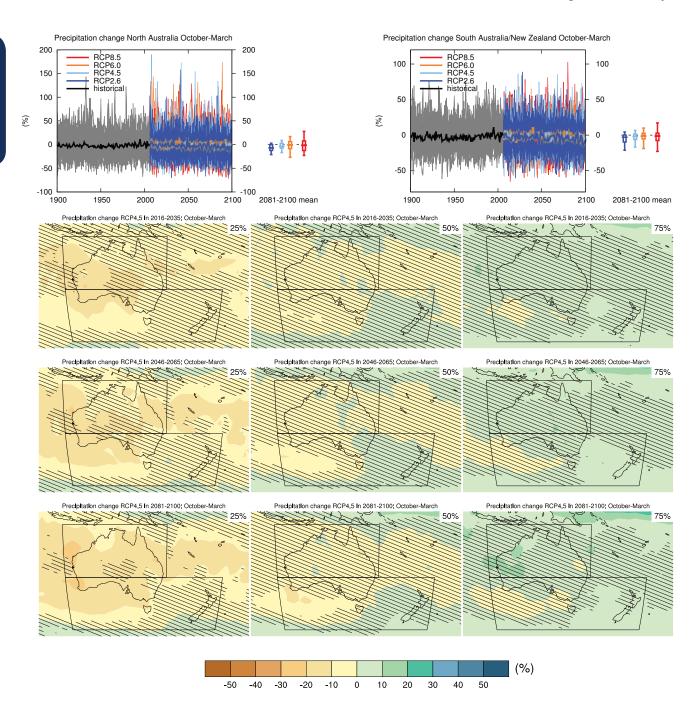
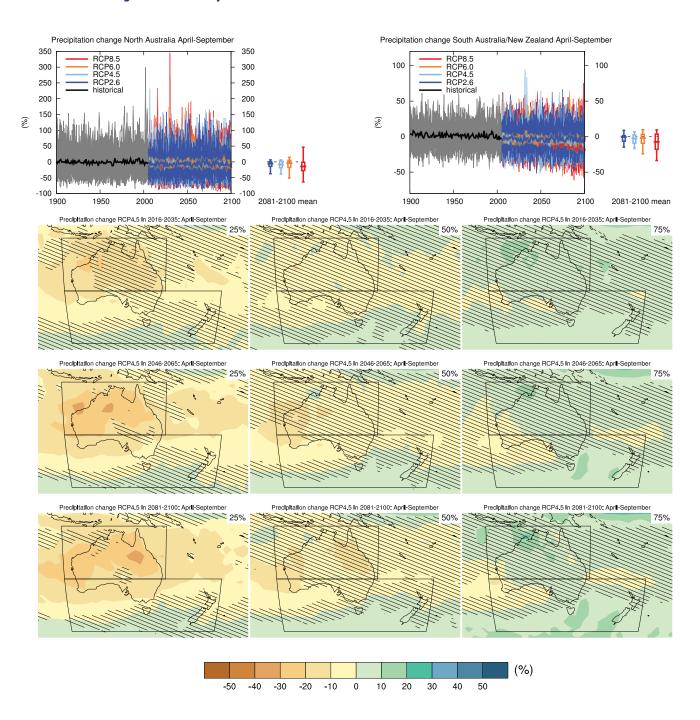



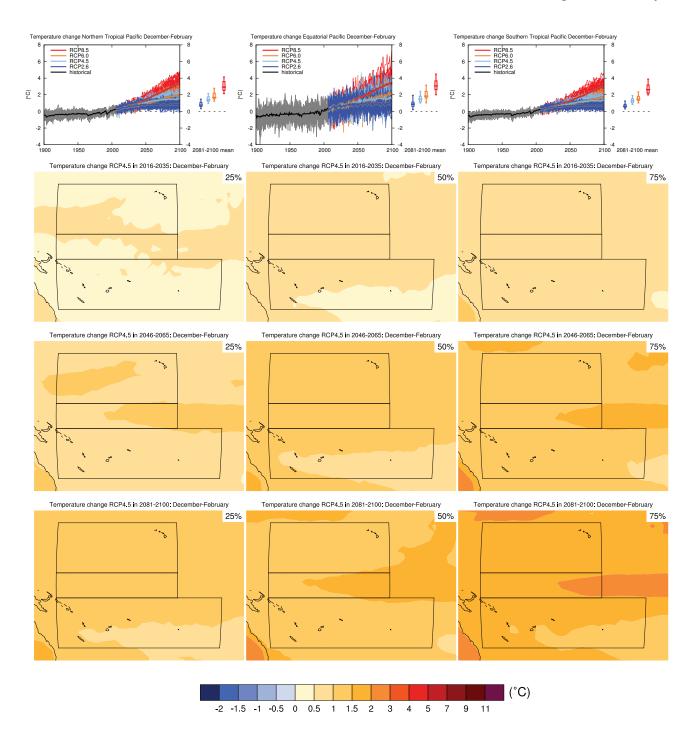
Figure A1.68 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in North Australia (30°S to 10°S, 110°E to 155°E) in December to February. (Top right) Same for land grid points in South Australia/New Zealand (50°S to 30°S, 110°E to 180°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.13 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

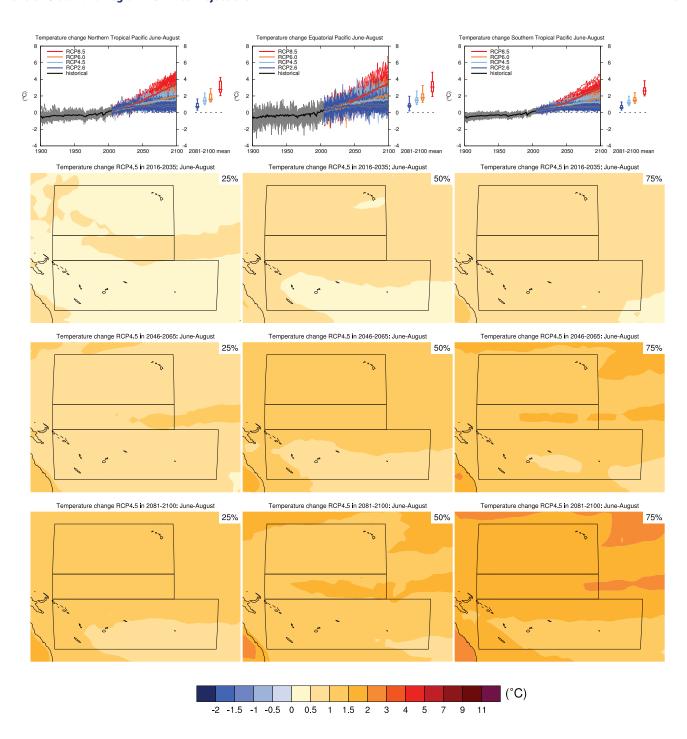
Figure Al.69 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in North Australia (30°S to 10°S, 110°E to 155°E) in June to August. (Top right) Same for land grid points in South Australia/New Zealand (50°S to 30°S, 110°E to 180°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 14.8.13 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

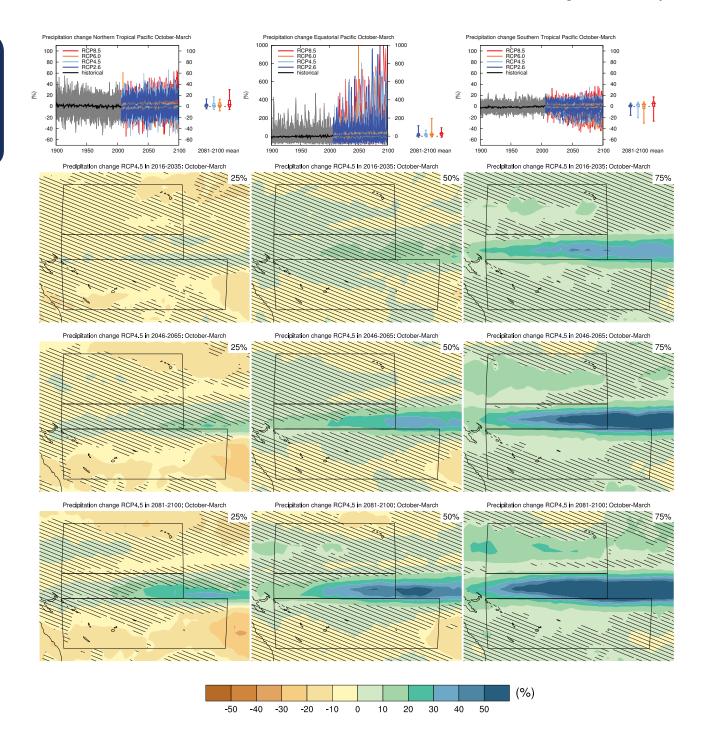




Figure AI.70 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in North Australia (30°S to 10°S, 110°E to 155°E) in October to March. (Top right) Same for land grid points in South Australia/New Zealand (50°S to 30°S, 110°E to 180°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios. Note different scales.

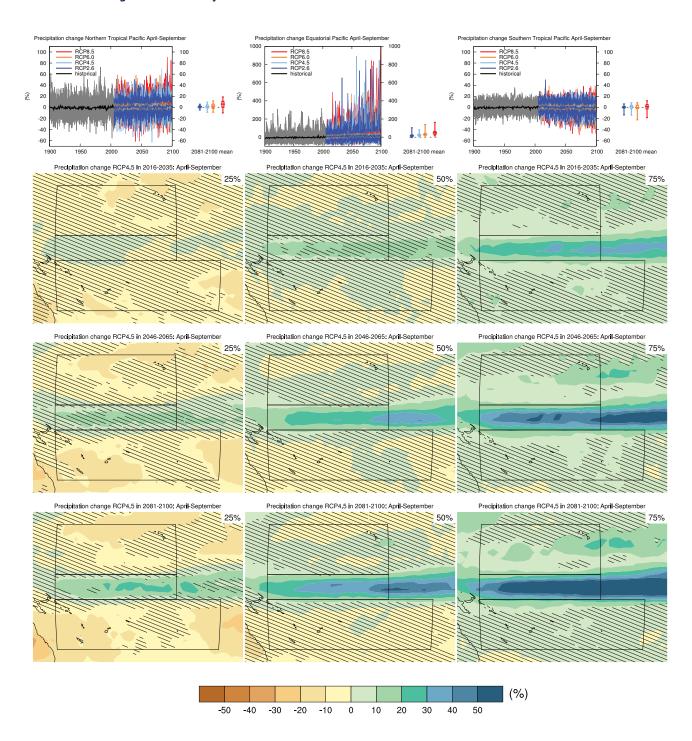
Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.2.2.4, 14.8.13 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.71 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in North Australia (30°S to 10°S, 110°E to 155°E) in April to September. (Top right) Same for land grid points in South Australia/New Zealand (50°S to 30°S, 110°E to 180°E). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios. Note different scales.

Sections 9.4.1.1, 9.6.1.1, Box 11.2, 14.2.2.4, 14.8.13 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure AI.72 | (Top left) Time series of temperature change relative to 1986–2005 averaged over all grid points in the Northern Tropical Pacific (5°N to 25°N, 155°E to 150°W) in December to February. Top middle: same for all grid points in the Equatorial Pacific (5°S to 5°N, 155°E to 150°W). (Top right) Same for all grid points in the Southern Tropical Pacific (5°S to 5°N, 155°E to 150°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 12.4.3.1, 14.4.1, 14.8.14 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.


Figure Al.73 (Top left) Time series of temperature change relative to 1986–2005 averaged over all grid points in the Northern Tropical Pacific (5°N to 25°N, 155°E to 150°W) in June to August. Top middle: same for all grid points in the Equatorial Pacific (5°S to 5°N, 155°E to 150°W). (Top right) Same for all grid points in the Southern Tropical Pacific (5°S to 5°N, 155°E to 150°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 12.4.3.1, 14.4.1, 14.8.14 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.74 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over all grid points in the Northern Tropical Pacific (5°N to 25°N, 155°E to 150°W). (Top right) Same for all grid points in the Southern Tropical Pacific (5°S to 5°N, 155°E to 150°W). (Top right) Same for all grid points in the Southern Tropical Pacific (5°S to 5°N, 155°E to 150°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios. Note different scales.

Sections 9.4.1.1, 9.6.1.1, 11.3.2.1.2, Box 11.2, 12.4.5.2, 14.8.14 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure AI.75 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over all grid points in the Northern Tropical Pacific (5°N to 25°N, 155°E to 150°W). (Top right) Same for all grid points in the Southern Tropical Pacific (5°S to 5°N, 155°E to 150°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios. Note different scales.

Sections 9.4.1.1, 9.6.1.1, 11.3.2.1.2, Box 11.2, 12.4.5.2, 14.8.14 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

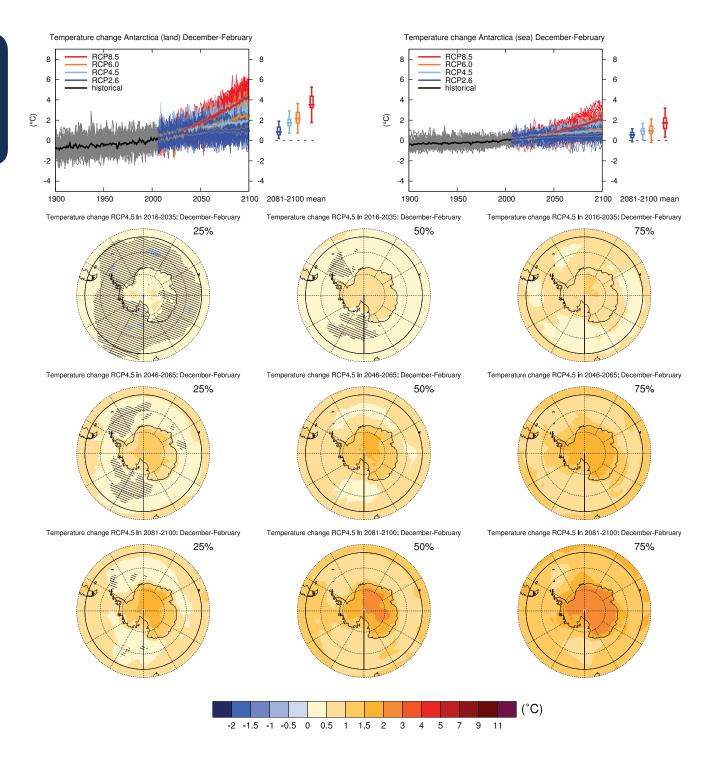
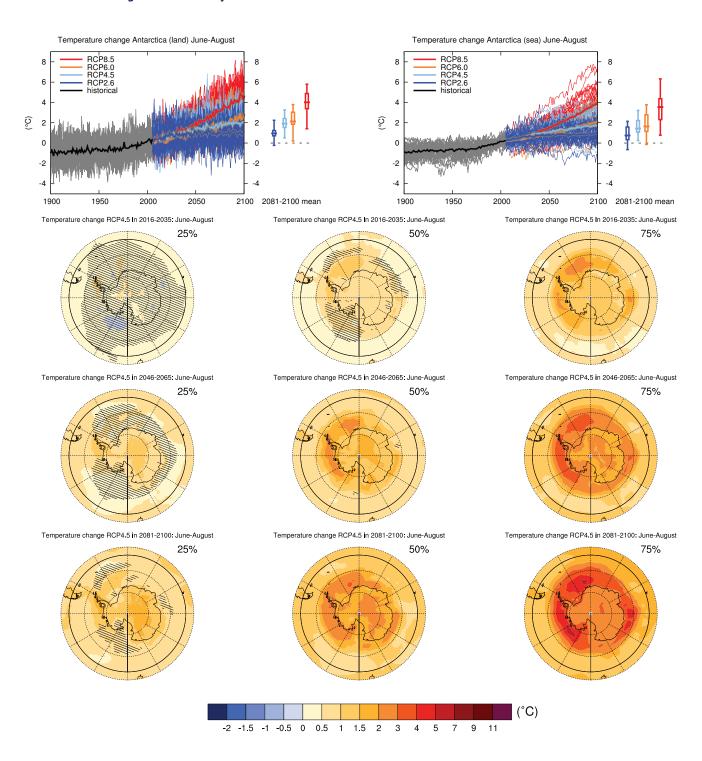



Figure AI.76 | (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Antarctica (90°S to 50°S) in December to February. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 12.4.3.1, 14.8.15 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure Al.77 (Top left) Time series of temperature change relative to 1986–2005 averaged over land grid points in Antarctica (90°S to 50°S) in June to August. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.1.1.4, Box 11.2, 12.4.3.1, 14.8.15 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

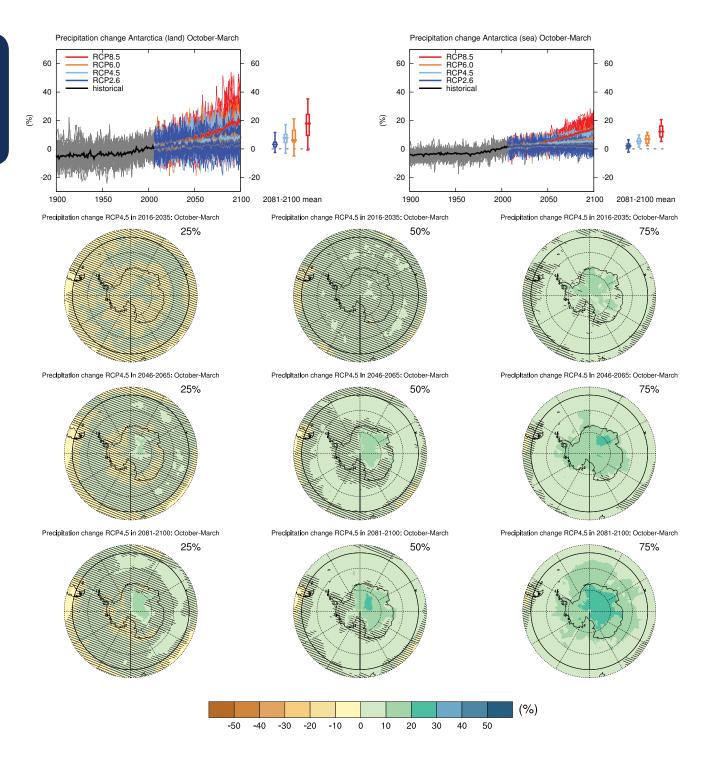



Figure A1.78 | (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Antarctica (90°S to 50°S) in October to March. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.2.2, Box 11.2, 12.4.5.2, 14.8.15 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Figure AI.79 (Top left) Time series of relative change relative to 1986–2005 in precipitation averaged over land grid points in Antarctica (90°S to 50°S) in April to September. (Top right) Same for sea grid points. Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are given for 2081–2100 in the four RCP scenarios.

Sections 9.4.1.1, 9.6.1.1, 10.3.2.2, Box 11.2, 12.4.5.2, 14.8.15 contain relevant information regarding the evaluation of models in this region, the model spread in the context of other methods of projecting changes and the role of modes of variability and other climate phenomena.

Annex II: Climate System Scenario Tables

Editorial Team:

Michael Prather (USA), Gregory Flato (Canada), Pierre Friedlingstein (UK/Belgium), Christopher Jones (UK), Jean-François Lamarque (USA), Hong Liao (China), Philip Rasch (USA)

Contributors:

Olivier Boucher (France), François-Marie Bréon (France), Tim Carter (Finland), William Collins (UK), Frank J. Dentener (EU/Netherlands), Edward J. Dlugokencky (USA), Jean-Louis Dufresne (France), Jan Willem Erisman (Netherlands), Veronika Eyring (Germany), Arlene M. Fiore (USA), James Galloway (USA), Jonathan M. Gregory (UK), Ed Hawkins (UK), Chris Holmes (USA), Jasmin John (USA), Tim Johns (UK), Fiona Lo (USA), Natalie Mahowald (USA), Malte Meinshausen (Germany), Colin Morice (UK), Vaishali Naik (USA/India), Drew Shindell (USA), Steven J. Smith (USA), David Stevenson (UK), Peter W. Thorne (USA/Norway/UK), Geert Jan van Oldenborgh (Netherlands), Apostolos Voulgarakis (UK/Greece), Oliver Wild (UK), Donald Wuebbles (USA), Paul Young (UK)

This annex should be cited as:

IPCC, 2013: Annex II: Climate System Scenario Tables [Prather, M., G. Flato, P. Friedlingstein, C. Jones, J.-F. Lamarque, H. Liao and P. Rasch (eds.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Table of Contents

Introduction	1397
Chemical Abbreviations and Symbols	1397
List of Tables	1398
References	1400
Tables	1401
AII.1: Historical Climate System Data	1401
AII.2: Anthropogenic Emissions	1410
AII.3: Natural Emissions	1421
AII.4: Abundances of the Well-Mixed Greenhouse Gases	1422
AII.5: Column Abundances, Burdens, and Lifetimes	1428
AII.6: Effective Radiative Forcing	1433
All.7: Environmental Data	1437

Introduction

Annex II presents, in tabulated form, data related to historical and projected changes in the climate system that are assessed in the chapters of this report (see Section 1.6). It also includes some comparisons with the Third Assessment Report (TAR) and Fourth Assessment Report (AR4) results. These data include values for emissions into the atmosphere, atmospheric abundances and burdens (integrated abundance), effective radiative forcing (ERF; includes adjusted forcing from aerosols, see Chapters 7 and 8), and global mean surface temperatures and sea level. Projections from 2010 to 2100 focus on the RCP scenarios (Moss et al., 2010; Lamarque et al., 2010; 2011; Meinshausen et al., 2011a; van Vuuren et al., 2011; see also Chapters 1, 6, 8, 11, 12 and 13). Projections also include previous IPCC scenarios (IPCC Scenarios 1992a (IS92a), Special Report on Emission Scenarios (SRES) A2 and B1, TAR Appendix II) and some alternative near-term scenarios for methane (CH₄) and short-lived pollutants that impact climate or air quality. Emissions from biomass burning are included as anthropogenic. ERF from land use change is also included in some tables.

Where uncertainties or ranges are presented here, they are noted in each table as being a recommended value or model ensemble mean/ median with a 68% confidence interval (16 to 84%, $\pm 1\sigma$ for a normal distribution) or 90% confidence interval (5 to 95%, $\pm 1.645\sigma$ for a normal distribution) or statistics (standard deviation, percentiles, or minimum/maximum) of an ensemble of models. In some cases these are a formal evaluation of uncertainty as assessed in the chapters, but in other cases (specifically Tables All.2.1, 3.1, 4.1, 5.1, 6.10, 7.1 to 7.5) they just describe the statistical results from the available models, and the referenced chapters must be consulted for the assessed uncertainty or confidence level of these results. In the case of Table AII.7.5, for example, the global mean surface temperature change (°C) relative to 1986–2005 is a statistical summary of the spread in the Coupled Model Intercomparison Project (CMIP) ensembles for each of the scenarios: model biases and model dependencies are not accounted for; the percentiles do not correspond to the assessed uncertainty derived in Chapters 11 (Section 11.3.6.3) and 12 (Section 12.4.1); and statistical spread across models cannot be interpreted in terms of calibrated language (Section 12.2).

The Representative Concentration Pathway (RCP) scenarios for emissions include only anthropogenic sources and use a single model to project from emissions to abundances to radiative forcing to climate change (Meinshausen et al., 2011a; 2011b). We include projected changes in natural carbon dioxide (CO₂) sources and sinks for 2010–2100 based on this assessment (Chapters 6 and 12). Present-day natural and anthropogenic emissions of CH₄ and nitrous oxide (N₂O) are assessed and used to scale the RCP anthropogenic emissions to be consistent with these best estimates (Chapters 6 and 11). Current model evaluations of atmospheric chemistry and the carbon cycle, including results from the CMIP5 and Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) projects, are used to project future composition and ERF separately from the RCP model (see Sections

6.4.3, 11.3.5 and 12.3). Thus, projected changes in greenhouse gases (GHGs), aerosols and ERF evaluated in this report may differ from the published RCPs and from what was used in the CMIP5 runs, and these are denoted RCP $^{\alpha}$. The CMIP5 climate projections used for the most part the RCP concentration pathways for well-mixed greenhouse gases (WMGHG) and the emissions pathways for ozone (O $_{3}$) and aerosol precursors. Such differences are discussed in the relevant chapters and noted in the tables.

For each species, the abundances (given as dry air mole fraction: ppm = micromoles per mole (10^{-6}); ppb = nanomoles per mole (10^{-9}); and ppt = picomoles per mole (10^{-12})), burdens (global total in grams, 1 Tg = 10^{12} g), average column amount (1 Dobson Unit (DU) = 2.687×10^{16} molecules per cm²), AOD (mean aerosol optical depth at 550 nm), ERF (effective radiative forcing, W m⁻²), and other climate system quantities are calculated for scenarios using methodologies based on the latest climate chemistry and climate carbon models (see Chapters 2, 6, 7, 8, 10, 11 and 12). Results are shown for individual years (e.g., 2010 = year 2010) and decadal averages (e.g., 2020^d = average of years 2016 through 2025), although some 10-year periods are different, see table notes. Year 2011 is the last year for observed quantities (denoted 2011* or 2011° s. Results are shown as global mean values except for environmental data focussing on air quality (Tables AII.7.1-AII.7.4), which give regional mean surface abundances of O₃ and fine particulate matter with diameter less than 2.5 µm (PM_{2.5}). Results for global mean surface temperature (Tables AII.7.5 and AII.7.6) show only raw CMIP5 data or data from previous assessments. For best estimates of near-term and long-term temperature change see Chapters 11 and 12, respectively. Results for global mean sea level rise (Table AII.7.7) are assessed values with uncertainties described in Chapter 13.

Chemical Abbreviations and Symbols

Well Mixed Greenhouse Gases (WMGHG)

CO ₂ carbon dioxide	(KP, Kyoto Protocol	gas)
--------------------------------	---------------------	------

CH₄ methane (KP)

N₂O nitrous oxide (KP)

HFC hydrofluorocarbon¹ (a class of compounds: HFC-32, HFC-

134a, ...) (KP)

PFC perfluorocarbon (a class of compounds: CF₄, C₂F₆, ...) (KP)

SF₆ sulphur hexafluoride (KP) NF₃ nitrogen trifluoride (KP)

CFC chlorofluorocarbon (a class of compounds: CFCl₃, CF₂Cl₂, ...)

(MP, Montreal Protocol gas)

HCFC hydrochlorofluorocarbon¹ (a class of compounds: HCFC-22,

HCFC-141b, ...) (MP)

CCl₄ carbon tetrachloride (MP)

CH₃CCl₃ methyl chloroform (MP)

¹ A few HFCs and HCFCs are very short lived in the atmosphere and therefore not well mixed.

Ozone and Aerosols, and their Precursors

ozone (both stratospheric and tropospheric) 03 NO, sum of NO (nitric oxide) and NO₂ (nitrogen dioxide)

NH₃ ammonia CO carbon monoxide

NMVOC a class of compounds comprising all non-methane volatile

organic compounds (i.e., hydrocarbons that may also contain

oxygen, also known as biogenic VOC or NMHC)

OH hydroxyl radical

 $PM_{2.5}$ any aerosols with diameter less than 2.5 µm

BCblack carbon aerosol 00 organic carbon aerosol SO₂ sulphur dioxide, a gas

 SO_x oxidized sulphur in gaseous form, including SO₂

SO₄= sulphate ion, usually as sulphuric acid or ammonium sul-

phate in aerosol

List of Tables

AII.1: Historical Climate System Data

Table All.1.1a: Historical abundances of the Kyoto greenhouse gases Table All.1.1b: Historical abundances of the Montreal Protocol greenhouse gas (all ppt)

Table All.1.2: Historical effective radiative forcing (ERF) (W m⁻²), including land use change (LUC)

Table AII.1.3: Historical global decadal-mean global surface-air temperature (°C) relative to 1961-1990 average

AII.2: Anthropogenic Emissions

Table AII.2.1a: Anthropogenic CO₂ emissions from fossil fuels and other industrial sources (FF) (PgC yr⁻¹)

Table All.2.1b: Anthropogenic CO₂ emissions from agriculture, forestry, land use (AFOLU) (PgC yr⁻¹)

Table All.2.1c: Anthropogenic total CO₂ emissions (PgC yr⁻¹)

Table AII.2.2: Anthropogenic CH₄ emissions (Tg yr⁻¹) Table AII.2.3: Anthropogenic N₂O emissions (TgN yr⁻¹) **Table AII.2.4:** Anthropogenic SF₆ emissions (Gg yr⁻¹)

Table AII.2.5: Anthropogenic CF₄ emissions (Gg yr⁻¹)

Table All.2.6: Anthropogenic C₂F₆ emissions (Gg yr⁻¹)

Table All.2.7: Anthropogenic C₆F₁₄ emissions (Gg yr⁻¹) Table AII.2.8: Anthropogenic HFC-23 emissions (Gg yr⁻¹)

Table AII.2.9: Anthropogenic HFC-32 emissions (Gg yr⁻¹)

Table AII.2.10: Anthropogenic HFC-125 emissions (Gg yr⁻¹)

Table AII.2.11: Anthropogenic HFC-134a emissions (Gg yr⁻¹)

Table All.2.12: Anthropogenic HFC-143a emissions (Gg yr⁻¹)

Table AII.2.13: Anthropogenic HFC-227ea emissions (Gg yr⁻¹) Table AII.2.14: Anthropogenic HFC-245fa emissions (Gg yr⁻¹)

Table AII.2.15: Anthropogenic HFC-43-10mee emissions (Gg yr⁻¹)

Table AII.2.16: Anthropogenic CO emissions (Tg yr⁻¹)

Table AII.2.17: Anthropogenic NMVOC emissions (Tg yr⁻¹)

Table All.2.18: Anthropogenic NO_x emissions (TgN yr⁻¹) Table AII.2.19: Anthropogenic NH₃ emissions (TgN yr⁻¹)

Table AII.2.20: Anthropogenic SO_x emissions (TgS yr⁻¹)

Table All.2.21: Anthropogenic OC aerosols emissions (Tg yr⁻¹) Table AII.2.22: Anthropogenic BC aerosols emissions (Tg yr⁻¹)

Table AII.2.23: Anthropogenic nitrogen fixation (Tg-N yr⁻¹)

AII.3: Natural Emissions

Table All.3.1a: Net land (natural and land use) CO2 emissions (PgC

Table AII.3.1b: Net ocean CO₂ emissions (PgC yr⁻¹)

AII.4: Abundances of the Well-Mixed Greenhouse Gases

Table All.4.1: CO₂ abundance (ppm)

Table AII.4.2: CH₄ abundance (ppb)

Table AII.4.3: N₂O abundance (ppb)

Table AII.4.4: SF₆ abundance (ppt)

Table AII.4.5: CF₄ abundance (ppt)

Table AII.4.6: C₂F₆ abundance (ppt)

Table AII.4.7: C₆F₁₄ abundance (ppt)

Table AII.4.8: HFC-23 abundance (ppt)

Table AII.4.9: HFC-32 abundance (ppt)

Table AII.4.10: HFC-125 abundance (ppt)

Table All.4.11: HFC-134a abundance (ppt)

Table AII.4.12: HFC-143a abundance (ppt)

Table AII.4.13: HFC-227ea abundance (ppt)

Table AII.4.14: HFC-245fa abundance (ppt)

Table AII.4.15: HFC-43-10mee abundance (ppt)

Table AII.4.16: Montreal Protocol greenhouse gas abundances (ppt)

AII.5: Column Abundances, Burdens, and Lifetimes

Table AII.5.1: Stratospheric O₃ column changes (DU)

Table AII.5.2: Tropospheric O₃ column changes (DU)

Table AII.5.3: Total aerosol optical depth (AOD)

Table AII.5.4: Absorbing aerosol optical depth (AAOD)

Table AII.5.5: Sulphate aerosol atmospheric burden (TgS)

Table AII.5.6: OC aerosol atmospheric burden (Tg)

Table AII.5.7: BC aerosol atmospheric burden (Tg)

Table AII.5.8: CH₄ atmospheric lifetime (yr) against loss by tropospheric OH

Table AII.5.9: N₂O atmospheric lifetime (yr)

All.6: Effective Radiative Forcing

Table AII.6.1: ERF from CO₂ (W m⁻²)

Table AII.6.2: ERF from CH₄ (W m⁻²)

Table AII.6.3: ERF from N₂O (W m⁻²)

Table AII.6.4: ERF from all HFCs (W m-2)

Table All.6.5: ERF from all PFCs and SF₆ (W m⁻²)

Table AII.6.6: ERF from Montreal Protocol greenhouse gases (W m⁻²)

Table AII.6.7a: ERF from stratospheric O₃ changes since 1850 (W m⁻²)

Table AII.6.7b: ERF from tropospheric O₃ changes since 1850 (W m⁻²)

Table AII.6.8: Total anthropogenic ERF from published RCPs and SRES $(W m^{-2})$

Table AII.6.9: ERF components relative to 1850 (W m⁻²) derived from **ACCMIP**

Table AII.6.10: Total anthropogenic plus natural ERF (W m⁻²) from CMIP5 and CMIP3, including historical

AII.7: Environmental Data

Table AII.7.1: Global mean surface O₃ change (ppb)

Table AII.7.2: Surface O₃ change (ppb) for HTAP regions

Table AII.7.3: Surface O₃ change (ppb) from CMIP5/ACCMIP for continental regions

Table AII.7.4: Surface particulate matter change (log₁₀[PM_{2.5} (microgram/m³)]) from CMIP5/ACCMIP for continental regions

Table AII.7.5: CMIP5 (RCP) and CMIP3 (SRES A1B) global mean surface temperature change (°C) relative to 1986–2005 reference period

Table AII.7.6: Global mean surface temperature change (°C) relative to 1990 from the TAR

Table AII.7.7: Global mean sea level rise (m) with respect to 1986–2005 at 1 January on the years indicated

References

- Calvin, K., et al., 2012: The role of Asia in mitigating climate change: Results from the Asia modeling exercise. *Energy Econ.*, **34**, S251–S260.
- Cionni, I., V. Eyring, J. Lamarque, W. Randel, D. Stevenson, F. Wu, G. Bodeker, T. Shepherd, D. Shindell, and D. Waugh, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. *Atmos. Chem. Phys.*, 11, 11267–11292.
- Cofala, J., M. Amann, Z. Klimont, K. Kupiainen, and L. Hoglund-Isaksson, 2007: Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos. Environ., 41, 8486–8499.
- Dentener, F., D. Stevenson, J. Cofala, R. Mechler, M. Amann, P. Bergamaschi, F. Raes, and R. Derwent, 2005: The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030. Atmos. Chem. Phys., 5, 1731–1755.
- Dentener, F., et al., 2006: The global atmospheric environment for the next generation. *Environ. Sci. Technol.*, **40**, 3586–3594.
- Douglass, A. and V. Fioletov, 2010: Stratospheric Ozone and Surface Ultraviolet Radiation in Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project-Report No. 52.World Meteorological Organization, Geneva, Switzerland.
- Erisman, J. W., M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, 2008: How a century of ammonia synthesis changed the world. *Nature Geosci.*, 1, 636–639.
- Eyring, V., et al., 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. *J. Geophys. Res.*, doi:10.1002/jgrd.50316.
- Fiore, A. M., et al., 2012: Global air quality and climate. *Chem. Soc. Rev.*, 41, 6663–6683.
- Fleming, E., C. Jackman, R. Stolarski and A. Douglass, 2011: A model study of the impact of source gas changes on the stratosphere for 1850-2100. Atmos. Chem. Phys., 11, 8515–8541.
- Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 1139–1150.
- Friedlingstein, P., et al., 2006: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. *J. Clim.*, **19**, 3337–3353.
- Holmes, C. D., M. J. Prather, A.O. Søvde, and G. Myhre, 2013: Future methane, hydroxyl, and their uncertainties: Key climate and emission parameters for future predictions. Atmos. Chem. Phys., 13, 285–302.
- HTAP, 2010. Hemispheric Transport of Air Pollution 2010, Part A: Ozone and Particulate Matter. United Nations, Geneva, Switzerland.
- Jones, C. D., et al., 2013: 21st Century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth System models under 4 Representative Concentration Pathways. J. Clim., doi:10.1175/JCLI-D-12-00554.1.
- Lamarque, J. F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. Van Vuuren, A. J. Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. *Clim. Change*, 109, 191–212.
- Lamarque, J. F., et al., 2010: Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys., 10, 7017–7039.
- Lamarque, J. F., et al., 2013: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev., 6, 179–206.
- Meinshausen, M., T. M. L. Wigley, and S. C. B. Raper, 2011b: Emulating atmosphereocean and carbon cycle models with a simpler model, MAGICC6-Part 2: Applications. *Atmos. Chem. Phys.*, **11**, 1457–1471.
- Meinshausen, M., et al., 2011a: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. *Clim. Change*, **109**, 213–241.
- Moss, R. H., et al., 2010: The next generation of scenarios for climate change research and assessment. *Nature*, **463**, 747–756.
- Prather, M., et al., 2001: Atmospheric chemistry and greenhouse gases. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [J. T. Houghton, Y. Ding, D. J. Griggs, M. Noquer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 239–287.
- Prather, M., et al., 2003: Fresh air in the 21st century? Geophys. Res. Lett., 30, 1100.

- Prather, M. J., C. D. Holmes, and J. Hsu, 2012: Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett., 39, L09803.
- Rogelj, J., et al., 2011: Emission pathways consistent with a 2°C global temperature limit. *Nature Clim. Change*, 1, 413–418.
- Shindell, D.T., J.-F. Lamarque, M. Schulz, M. Flanner, et al., 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 2939–2974
- Stevenson, D. S., et al., 2013: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 3063–3085.
- van Vuuren, D. P., et al., 2008: Temperature increase of 21st century mitigation scenarios. *Proc. Natl. Acad. Sci. U.S.A.*, **105**, 15258–15262.
- van Vuuren, D., et al., 2011: The representative concentration pathways: An overview. Clim. Change, 109, 5–31.
- Voulgarakis, A., et al., 2013: Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. 21 *Atmos. Chem. Phys.*, **13**, 2563–2587.
- Wild, O., A.M. Fiore et al., 2012: Modelling future changes in surface ozone: A parameterized approach. Atmos. Chem. Phys., 12, 2037–2054.
- WMO. 2010. Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project—Report No. 52. World Meteorological Organization, Geneva, Switzerland.
- Young, P. J., et al., 2013: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 2063–2090.

Tables

AII.1: Historical Climate System Data

Table All.1.1a | Historical abundances of the Kyoto greenhouse gases

Year	CO ₂ (ppm)	CH ₄ (ppb)	N ₂ O (ppb)
PI*	278 ± 2	722 ± 25	270 ± 7
1755	276.7	723	272.8
1760	276.5	726	274.1
1765	276.6	730	274.2
1770	277.3	733	273.7
1775	278.0	736	273.1
1780	278.2	739	272.4
1785	278.6	742	271.9
1790	280.0	745	271.8
1795	281.4	748	272.1
1800	282.6	751	272.6
1805	283.6	755	272.1
1810	284.2	760	271.4
1815	284.0	765	271.5
1820	283.3	769	272.9
1825	283.1	774	274.1
1830	283.8	779	273.7
1835	283.9	784	270.5
1840	284.1	789	269.6
1845	285.8	795	270.3
1850	286.8	802	270.4
1855	286.4	808	270.6
1860	286.1	815	271.7
1865	286.3	823	272.3
1870	288.0	831	273.0
1875	289.4	839	274.7
1880	289.8	847	275.8
1885	290.9	856	277.2
1890	293.1	866	278.3
1895	295.4	877	277.7
1900	296.2	891	277.3
1905	297.4	912	279.2
1910	299.3	935	280.8
1915	301.1	961	282.7
1920	303.3	990	285.1
1925	304.7	1020	284.3
1930	306.6	1049	284.9
1935	308.4	1077	286.6
1940	310.4	1102	287.7
1945	310.9	1129	288.0
1950	311.2	1162	287.6
1955	313.4	1207	289.6
1956	314.0	1217	290.4
1957	314.6	1228	291.2
1958	315.3	1239	291.7

Year	CO ₂ (ppm)	CH ₄ (ppb)	N₂O (ppb)
PI*	278 ± 2	722 ± 25	270 ± 7
1959	316.0	1251	292.1
1960	316.7	1263	292.4
1961	317.4	1275	292.5
1962	318.0	1288	292.5
1963	318.5	1301	292.6
1964	319.0	319.0	292.6
1965	319.7	1328	292.7
1966	320.6	1343	292.9
1967	321.5	1357	293.3
1968	322.5	1372	293.8
1969	323.5	1388	294.4
1970	324.6	1403	295.2
1971	325.6	1419	296.0
1972	326.8	1435	296.9
1973	328.0	1451	297.8
1974	329.2	1467	298.4
1975	330.2	1483	299.0
1976	331.3	1500	299.4
1977	332.7	1516	299.8
1978	334.3	1532	300.2
1979	336.2	1549	300.7
1980	338.0	1567	301.3
1981	339.3	1587	302.0
1982	340.5	1607	303.0
1983	342.1	1626	303.9
1984	343.7	1643	304.5
1985	345.2	1657	305.5
1986	346.6	1670	305.9
1987	348.4	1682	306.3
1988	350.5	1694	306.7
1989	352.2	1704	307.8
1990	353.6	1714	308.7
1991	354.8	1725	309.3
1992	355.7	1733	309.8
1993	356.6	1738	310.1
1994	358.0	1743	310.4
1995	359.9	1747	311.0
1996	361.4	1751	311.8
1997	363.1	1757	312.7
1998	365.2	1765	313.7
1999	367.2	1771	314.7
2000	368.7	1773	315.6
2001	370.2	1773	316.3
2002	372.3	1774	317.0

(continued on next page)

Table All.1.1a (continued)

Year	CO ₂ (ppm)	CH₄ (ppb)	N ₂ O (ppb)	
PI*	278 ± 2	722 ± 25	270 ± 7	
2003	374.5	1776	317.6	
2004	376.6	1776	318.3	
2005	378.7	1776	319.1	
2006	380.8	1776	319.8	
2007	382.7	1781	320.6	
2008	384.6	1787	321.4	
2005	378.7	1776	319.1	
2006	380.8	1776	319.8	
2007	382.7	1781	320.6	
2008	384.6	1787	321.4	
2009	386.4	1792	322.3	
2010	388.4	1798	323.2	
2011*	390.5 ± 0.3	1803 ± 4	324 ± 1	

Year	SF ₆ (ppt)	CF ₄ (ppt)	C ₂ F ₆ (ppt)	C ₆ F ₁₄ (ppt)	NF ₃ (ppt)
PI*	0	35	0	0	
1900	0	35	0	0	
1910	0	35	0.1	0	
1920	0	35	0.1	0	
1930	0	36	0.2	0	
1940	0	37	0.3	0	
1950	0	39	0.5	0	
1960	0.1	43	0.6	0	
1970	0.3	51	0.8	0	
1980	0.8	60	1.2	0	
1990	2.4	68	1.9	0	
2000	4.5	76	2.9	0	
2005	5.6	75	3.7	0	0.3
2010	7.0	78.3	4.1	0	
2011*	7.3 ± 0.1	79.0	4.2	0	0.6

Year	HFC-23 (ppt)	HFC-32 (ppt)	HFC-125 (ppt)	HFC-134a (ppt)	HFC-143a (ppt)	HFC-227ea (ppt)	HFC-245fa (ppt)	HFC-43-10mee (ppt)	
PI*	0	0	0	0	0	0	0	0	
1940	0.1	0	0	0	0	0	0	0	
1950	0.3	0	0	0	0	0	0	0	
1960	0.7	0	0	0	0	0	0	0	
1970	1.6	0	0	0	0	0	0	0	
1980	3.7	0	0	0	0.2	0	0	0	
1990	7.9	0	0.1	0	0.6	0	0	0	
2000	14.8	0	1.3	14	3.1	0.1	0	0	
2010	23.2	4.1	8.2	58	10.9	0.6	1.1	0	
2011*	24.0	4.9	9.6	63 ± 1	12.0	0.65	1.24	0	

Notes:

Abundances are mole fraction of dry air for the lower, well-mixed atmosphere (ppm = micromoles per mole, ppb = nanomoles per mole, ppt = picomoles per mole). Values refer to single-year average. Uncertainties (5 to 95% confidence intervals) are given for 2011 only when more than one laboratory reports global data. Pre-industrial (P1*, taken to be 1750 for GHG) and present day (2011*) abundances are from Chapter 2, Tables 2.1 and 2.5M.1; see also Chapter 6 for Holocene variability (10 ppm CO₂, 40 ppb CH₄, 10 ppb N₂O). Intermediate data for CO₂, CH₄ and N₂O are from Chapters 2 and 8, Figure 8.6. See also Appendix 1.A. Intermediate data for the F-gases are taken from Meinshausen et al. (2011).

Table All.1.1b | Historical abundances of the Montreal Protocol greenhouse gases (all ppt)

Year	CFC-11	CFC-12	CFC-113	CFC-114	CFC-115	CCI ₄	CH ₃ CCl ₃	HCFC-22
PI*	0	0	0	0	0	0	0	0
1960	9.5	29.5	1.9	3.8	0.0	52.1	1.5	2.1
1965	23.5	58.8	3.1	5.0	0.0	64.4	4.7	4.9
1970	52.8	114.3	5.5	6.5	0.2	75.9	16.2	12.1
1975	106.1	203.1	10.4	8.3	0.6	85.5	40.0	23.8
1980	161.9	297.4	19.0	10.7	1.3	93.3	81.6	42.5
1985	205.4	381.2	37.3	12.9	2.8	99.6	106.1	62.7
1990	256.2	477.5	67.6	15.4	4.7	106.5	127.2	88.2
1995	267.4	523.8	83.6	16.1	6.8	103.2	110.3	113.6
2000	261.7	541.0	82.3	16.5	7.9	98.6	49.7	139.5
2005	251.6	542.7	78.8	16.6	8.3	93.7	20.1	165.5
2010	240.9	532.5	75.6	16.4	8.4	87.6	8.3	206.8
2011*	238 ± 1	528±2	74.3±0.5	15.8	8.4	86±2	6.4±0.4	213±2

Year	HCFC-141b	HCFC-142b	Halon 1211	Halon 1202	Halon 1301	Halon 2402	CH₃Br	CH₃Cl
PI*	0	0	0	0	0	0		
1960	0.0	0.0	0.00	0.00	0.00	0.00	6.5	510
1965	0.0	0.0	0.00	0.00	0.00	0.00	6.7	528
1970	0.0	0.0	0.02	0.00	0.00	0.02	0.0	540
1975	0.0	0.2	0.12	0.01	0.04	0.06	7.4	546
1980	0.0	0.4	0.42	0.01	0.24	0.15	7.7	548
1985	0.0	0.7	1.04	0.02	0.74	0.26	8.2	549
1990	0.0	1.2	2.27	0.03	1.66	0.41	8.6	550
1995	2.7	6.3	3.34	0.04	2.63	0.52	9.2	550
2000	11.8	11.4	4.02	0.04	2.84	0.50	8.9	550
2005	17.5	15.1	4.26	0.02	3.03	0.48	7.9	550
2010	20.3	20.5	4.07	0.00	3.20	0.46	7.2	550
2011*	21.4±0.5	21.2±0.5	4.07	0.00	3.23	0.45	7.1	534

Notes

See Table All.1.1a. For present-day (2011*) see Chapter 2. Intermediate years are from Scenario A1, WMO Ozone Assessment (WMO, 2010).

Table AII.1.2 | Historical effective radiative forcing (ERF) (W m⁻²), including land use change (LUC)

	Year	CO ₂	GHG Other*	O ₃ (Trop)	O₃ (Strat)	Aerosol (Total)	LUC	H₂O (Strat)	BC Snow	Con- trails	Solar	Volcano
	1750	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.001
	1751	-0.023	0.004	0.000	0.000	-0.002	0.000	0.000	0.000	0.000	-0.014	0.000
	1752	-0.024	0.006	0.001	0.000	-0.004	-0.001	0.000	0.000	0.000	-0.029	0.000
	1753	-0.024	0.007	0.001	0.000	-0.005	-0.001	0.000	0.000	0.000	-0.033	0.000
	1754	-0.025	0.008	0.002	0.000	-0.007	-0.002	0.000	0.001	0.000	-0.043	0.000
ĺ	1755	-0.026	0.010	0.002	0.000	-0.009	-0.002	0.000	0.001	0.000	-0.054	-0.664
	1756	-0.026	0.011	0.003	0.000	-0.011	-0.002	0.000	0.001	0.000	-0.055	0.000
	1757	-0.027	0.013	0.003	0.000	-0.013	-0.003	0.000	0.001	0.000	-0.048	0.000
	1758	-0.028	0.014	0.003	0.000	-0.014	-0.003	0.000	0.001	0.000	-0.050	0.000
ı	1759	-0.028	0.015	0.004	0.000	-0.016	-0.004	0.000	0.001	0.000	-0.102	0.000
	1760	-0.029	0.016	0.004	0.000	-0.018	-0.004	0.000	0.001	0.000	-0.112	-0.060
ı	1761	-0.029	0.017	0.005	0.000	-0.020	-0.004	0.000	0.002	0.000	-0.016	-1.093
	1762	-0.029	0.017	0.005	0.000	-0.021	-0.005	0.001	0.002	0.000	-0.007	-0.300
	1763	-0.029	0.018	0.006	0.000	-0.023	-0.005	0.001	0.002	0.000	-0.018	-0.093
	1764	-0.028	0.018	0.006	0.000	-0.025	-0.006	0.001	0.002	0.000	-0.022	-0.021
	1765	-0.026	0.018	0.006	0.000	-0.027	-0.006	0.001	0.002	0.000	-0.054	-0.003
	1766	-0.024	0.018	0.007	0.000	-0.029	-0.006	0.001	0.002	0.000	-0.048	0.000
ı	1767	-0.022	0.018	0.007	0.000	-0.030	-0.007	0.001	0.003	0.000	-0.036	0.000
	1768	-0.020	0.018	0.008	0.000	-0.032	-0.007	0.001	0.003	0.000	0.016	0.000
	1769	-0.017	0.018	0.008	0.000	-0.034	-0.008	0.001	0.003	0.000	0.050	0.000
	1770	-0.014	0.018	0.009	0.000	-0.036	-0.008	0.001	0.003	0.000	0.081	0.000
	1771	-0.011	0.018	0.009	0.000	-0.038	-0.008	0.001	0.003	0.000	0.055	0.000
	1772	-0.008	0.018	0.009	0.000	-0.039	-0.009	0.001	0.003	0.000	0.052	-0.070
	1773	-0.005	0.018	0.010	0.000	-0.041	-0.009	0.001	0.003	0.000	0.016	-0.020
	1774	-0.003	0.018	0.010	0.000	-0.043	-0.010	0.001	0.004	0.000	-0.002	-0.005
	1775	-0.001	0.018	0.011	0.000	-0.045	-0.010	0.001	0.004	0.000	-0.038	-0.001
	1776	0.001	0.018	0.011	0.000	-0.046	-0.010	0.001	0.004	0.000	-0.045	0.000
	1777	0.002	0.018	0.011	0.000	-0.048	-0.011	0.001	0.004	0.000	-0.036	0.000
	1778	0.003	0.018	0.012	0.000	-0.050	-0.011	0.001	0.004	0.000	0.017	-0.067
	1779	0.003	0.018	0.012	0.000	-0.052	-0.012	0.001	0.004	0.000	-0.034	-0.071
	1780	0.003	0.018	0.013	0.000	-0.054	-0.012	0.002	0.004	0.000	-0.069	-0.018
	1781	0.004	0.018	0.013	0.000	-0.055	-0.012	0.002	0.005	0.000	-0.057	-0.004
	1782	0.004	0.018	0.014	0.000	-0.057	-0.013	0.002	0.005	0.000	-0.028	-0.001
	1783	0.006	0.018	0.014	0.000	-0.059	-0.013	0.002	0.005	0.000	-0.065	-7.857
	1784	0.009	0.018	0.014	0.000	-0.061	-0.014	0.002	0.005	0.000	-0.059	-0.522
l	1785	0.012	0.018	0.015	0.000	-0.062	-0.014	0.002	0.005	0.000	-0.046	-0.121
	1786	0.017	0.018	0.015	0.000	-0.064	-0.014	0.002	0.005	0.000	-0.022	-0.027
	1787	0.021	0.018	0.016	0.000	-0.066	-0.015	0.002	0.005	0.000	-0.001	-0.002
	1788	0.027	0.018	0.016	0.000	-0.068	-0.015	0.002	0.006	0.000	0.034	-0.133
	1789	0.033	0.019	0.017	0.000	-0.070	-0.016	0.002	0.006	0.000	-0.033	-0.041
	1790	0.038	0.019	0.017	0.000	-0.070	-0.016	0.002	0.006	0.000	-0.058	-0.009
	1790	0.038	0.019	0.017	0.000	-0.071	-0.016	0.002	0.006	0.000	-0.056	-0.003 -0.001
	1791	0.050	0.020	0.017	0.000	-0.075 -0.075	-0.010	0.002	0.006	0.000	-0.050	0.000
	1792	0.055	0.020	0.018	0.000	-0.073	-0.017	0.002	0.006	0.000	-0.065	0.000
	1793	0.060	0.020	0.018	0.000	-0.077	-0.017	0.002	0.006	0.000	-0.063	-0.157
	1794	0.066	0.021	0.019	0.000	-0.079	-0.018	0.002	0.006	0.000	-0.064	0.000
	1795	0.070	0.022	0.019	0.000	-0.080	-0.018	0.002	0.007	0.000	-0.027	-0.781
	1796	0.070	0.023	0.020	0.000	-0.082 -0.084	-0.018	0.002	0.007	0.000	-0.033 -0.043	-0.781 -0.071
	1797	0.075	0.023	0.020	0.000	-0.084	-0.019 -0.019	0.002	0.007	0.000	-0.043 -0.045	-0.071 -0.016
	1/30	0.079	0.024	0.020	0.000	-0.066	-0.019	0.002	0.007	0.000	-0.045	-0.016

Table AII.1.2 | (continued)

Year	CO ₂	GHG Other*	O ₃ (Trop)	O₃ (Strat)	Aerosol (Total)	LUC	H ₂ O (Strat)	BC Snow	Con- trails	Solar	Volcano
1799	0.084	0.025	0.021	0.000	-0.087	-0.020	0.003	0.007	0.000	-0.047	-0.002
1800	0.088	0.025	0.021	0.000	-0.089	-0.020	0.003	0.007	0.000	-0.055	0.000
1801	0.092	0.026	0.022	0.000	-0.091	-0.020	0.003	0.007	0.000	-0.021	-0.154
1802	0.096	0.026	0.022	0.000	-0.093	-0.021	0.003	0.008	0.000	-0.010	-0.048
1803	0.099	0.026	0.023	0.000	-0.095	-0.021	0.003	0.008	0.000	-0.033	-0.011
1804	0.103	0.026	0.023	0.000	-0.096	-0.022	0.003	0.008	0.000	-0.040	-0.230
1805	0.106	0.026	0.023	0.000	-0.098	-0.022	0.003	0.008	0.000	-0.046	-0.070
1806	0.109	0.026	0.024	0.000	-0.100	-0.022	0.003	0.008	0.000	-0.036	-0.016
1807	0.112	0.026	0.024	0.000	-0.102	-0.023	0.003	0.008	0.000	-0.057	-0.002
1808	0.114	0.026	0.025	0.000	-0.104	-0.023	0.003	0.008	0.000	-0.065	0.000
1809	0.116	0.026	0.025	0.000	-0.105	-0.024	0.003	0.009	0.000	-0.065	-6.947
1810	0.117	0.026	0.025	0.000	-0.107	-0.024	0.003	0.009	0.000	-0.070	-2.254
1811	0.118	0.027	0.026	0.000	-0.109	-0.024	0.003	0.009	0.000	-0.072	-0.836
1812	0.119	0.027	0.026	0.000	-0.111	-0.025	0.003	0.009	0.000	-0.072	-0.308
1813	0.118	0.028	0.027	0.000	-0.112	-0.025	0.004	0.009	0.000	-0.069	-0.109
1814	0.117	0.029	0.027	0.000	-0.114	-0.026	0.004	0.009	0.000	-0.064	0.000
1815	0.115	0.030	0.028	0.000	-0.116	-0.026	0.004	0.009	0.000	-0.062	-11.629
1816	0.113	0.031	0.028	0.000	-0.118	-0.026	0.004	0.010	0.000	-0.052	-4.553
1817	0.110	0.032	0.028	0.000	-0.120	-0.027	0.004	0.010	0.000	-0.048	-2.419
1818	0.107	0.034	0.029	0.000	-0.121	-0.027	0.004	0.010	0.000	-0.053	-0.915
1819	0.104	0.035	0.029	0.000	-0.123	-0.028	0.004	0.010	0.000	-0.054	-0.337
1820	0.101	0.037	0.030	0.000	-0.125	-0.028	0.004	0.010	0.000	-0.059	-0.039
1821	0.099	0.038	0.030	0.000	-0.127	-0.028	0.004	0.010	0.000	-0.065	0.000
1822	0.097	0.040	0.031	0.000	-0.128	-0.029	0.004	0.010	0.000	-0.066	0.000
1823	0.096	0.041	0.031	0.000	-0.130	-0.029	0.004	0.011	0.000	-0.068	0.000
1824	0.097	0.042	0.031	0.000	-0.132	-0.030	0.004	0.011	0.000	-0.059	0.000
1825	0.098	0.043	0.032	0.000	-0.134	-0.030	0.005	0.011	0.000	-0.052	0.000
1826	0.100	0.044	0.032	0.000	-0.136	-0.030	0.005	0.011	0.000	-0.044	0.000
1827	0.103	0.045	0.032	0.000	-0.137	-0.031	0.005	0.011	0.000	-0.018	0.000
1828	0.106	0.045	0.033	0.000	-0.139	-0.031	0.005	0.011	0.000	-0.008	0.000
1829	0.109	0.045	0.034	0.000	-0.133	-0.031	0.005	0.011	0.000	-0.006	0.000
1830	0.111	0.045	0.034	0.000	-0.143	-0.032	0.005	0.012	0.000	0.002	0.000
1831	0.113	0.043	0.034	0.000	-0.145	-0.032	0.005	0.012	0.000	0.002	-1.538
1832	0.113	0.043	0.035	0.000	-0.143	-0.032	0.005	0.012	0.000	-0.020	-1.229
1833	0.114	0.043	0.035	0.000	-0.148	-0.033	0.005	0.012	0.000	-0.020	-0.605
1834	0.114	0.039	0.036	0.000	-0.140	-0.033	0.005	0.012	0.000	-0.033	-0.223
1835	0.114	0.033	0.036	0.000	-0.150	-0.034	0.005	0.012	0.000	-0.038	-4.935
1836	0.113	0.037	0.037	0.000	-0.152 -0.153	-0.034	0.005	0.012	0.000	0.017	-1.445
1837	0.112	0.036	0.037	0.000	-0.153 -0.155	-0.034 -0.035	0.005	0.012	0.000	0.017	-0.523
1838	0.112	0.035	0.037	0.000	-0.157	-0.035	0.006	0.013	0.000	0.051	-0.192
1839	0.114	0.036	0.038	0.000	-0.159	-0.036	0.006	0.013	0.000	0.028	-0.069
1840	0.117	0.037	0.038	0.000	-0.161	-0.036	0.006	0.013	0.000	0.027	-0.047
1841	0.121	0.038	0.039	0.000	-0.162	-0.036	0.006	0.013	0.000	0.007	-0.013
1842	0.127	0.040	0.039	0.000	-0.164	-0.037	0.006	0.013	0.000	-0.006	-0.003
1843	0.135	0.041	0.039	0.000	-0.166	-0.037	0.006	0.013	0.000	-0.013	-0.052
1844	0.142	0.042	0.040	0.000	-0.168	-0.038	0.006	0.014	0.000	-0.024	-0.014
1845	0.149	0.043	0.040	0.000	-0.169	-0.038	0.006	0.014	0.000	-0.026	-0.003
1846	0.155	0.044	0.041	0.000	-0.171	-0.038	0.006	0.014	0.000	-0.024	-0.071
1847	0.160	0.044	0.041	0.000	-0.173	-0.039	0.007	0.014	0.000	-0.062	-0.020
1848	0.163	0.045	0.042	0.000	-0.175	-0.039	0.007	0.014	0.000	-0.018	-0.005

Table AII.1.2 | (continued)

Year	CO ₂	GHG Other*	O ₃ (Trop)	O ₃ (Strat)	Aerosol (Total)	LUC	H ₂ O (Strat)	BC Snow	Con- trails	Solar	Volcano
1849	0.166	0.046	0.042	0.000	-0.177	-0.040	0.007	0.014	0.000	0.043	-0.001
1850	0.167	0.046	0.042	0.000	-0.178	-0.040	0.007	0.014	0.000	0.024	-0.100
1851	0.167	0.047	0.043	0.000	-0.180	-0.040	0.007	0.015	0.000	0.016	-0.075
1852	0.166	0.048	0.044	0.000	-0.182	-0.041	0.007	0.015	0.000	0.020	-0.025
1853	0.164	0.049	0.045	0.000	-0.184	-0.041	0.007	0.015	0.000	0.011	-0.025
1854	0.162	0.050	0.046	0.000	-0.185	-0.041	0.007	0.016	0.000	-0.010	0.000
1855	0.160	0.051	0.047	0.000	-0.187	-0.042	0.007	0.016	0.000	-0.027	-0.050
1856	0.158	0.052	0.048	0.000	-0.189	-0.042	0.007	0.016	0.000	-0.037	-0.975
1857	0.156	0.054	0.049	0.000	-0.191	-0.042	0.008	0.016	0.000	-0.037	-1.500
1858	0.155	0.055	0.050	0.000	-0.192	-0.043	0.008	0.017	0.000	-0.020	-0.725
1859	0.154	0.057	0.050	0.000	-0.194	-0.043	0.008	0.017	0.000	-0.007	-0.275
1860	0.154	0.058	0.051	0.000	-0.196	-0.043	0.008	0.017	0.000	0.029	-0.125
1861	0.153	0.060	0.052	0.000	-0.198	-0.044	0.008	0.018	0.000	0.036	-0.075
1862	0.153	0.061	0.053	0.000	-0.199	-0.044	0.008	0.018	0.000	0.013	-0.350
1863	0.154	0.062	0.054	0.000	-0.201	-0.044	0.008	0.018	0.000	0.006	-0.250
1864	0.156	0.063	0.055	0.000	-0.203	-0.045	0.008	0.018	0.000	-0.017	-0.125
1865	0.158	0.064	0.056	0.000	-0.205	-0.045	0.009	0.019	0.000	-0.018	-0.050
1866	0.162	0.066	0.057	0.000	-0.206	-0.045	0.009	0.019	0.000	-0.021	-0.025
1867	0.167	0.067	0.058	0.000	-0.208	-0.046	0.009	0.019	0.000	-0.037	0.000
1868	0.173	0.068	0.059	0.000	-0.210	-0.046	0.009	0.020	0.000	-0.039	0.000
1869	0.180	0.070	0.059	0.000	-0.212	-0.046	0.009	0.020	0.000	-0.005	-0.025
1870	0.188	0.071	0.060	0.000	-0.213	-0.047	0.009	0.020	0.000	-0.028	-0.025
1871	0.195	0.073	0.061	0.000	-0.215	-0.047	0.009	0.020	0.000	0.025	-0.025
1872	0.202	0.075	0.062	0.000	-0.217	-0.047	0.009	0.021	0.000	0.012	-0.025
1873	0.208	0.077	0.063	0.000	-0.219	-0.048	0.010	0.021	0.000	0.015	-0.075
1874	0.212	0.079	0.064	0.000	-0.220	-0.048	0.010	0.021	0.000	0.000	-0.050
1875	0.215	0.081	0.065	0.000	-0.222	-0.049	0.010	0.022	0.000	-0.015	-0.025
1876	0.218	0.083	0.066	0.000	-0.224	-0.049	0.010	0.022	0.000	-0.029	-0.150
1877	0.219	0.084	0.067	0.000	-0.226	-0.049	0.010	0.022	0.000	-0.033	-0.125
1878	0.219	0.086	0.067	0.000	-0.227	-0.050	0.010	0.022	0.000	-0.041	-0.075
1879	0.221	0.088	0.068	0.000	-0.229	-0.050	0.010	0.023	0.000	-0.044	-0.050
1880	0.222	0.089	0.069	0.000	-0.231	-0.050	0.011	0.023	0.000	-0.039	-0.025
1881	0.224	0.091	0.070	0.000	-0.233	-0.051	0.011	0.023	0.000	-0.007	-0.025
1882	0.228	0.092	0.071	0.000	-0.234	-0.051	0.011	0.024	0.000	-0.019	-0.025
1883	0.232	0.094	0.072	0.000	-0.236	-0.052	0.011	0.024	0.000	-0.031	-1.175
1884	0.238	0.096	0.073	0.000	-0.238	-0.052	0.011	0.024	0.000	0.018	-3.575
1885	0.244	0.098	0.074	0.000	-0.240	-0.053	0.011	0.024	0.000	0.002	-1.575
1886	0.250	0.100	0.075	0.000	-0.241	-0.053	0.011	0.025	0.000	-0.014	-0.900
1887	0.258	0.102	0.075	0.000	-0.243	-0.053	0.012	0.025	0.000	-0.033	-0.925
1888	0.266	0.104	0.076	0.000	-0.245	-0.054	0.012	0.025	0.000	-0.037	-0.550
1889	0.274	0.106	0.077	0.000	-0.247	-0.054	0.012	0.026	0.000	-0.041	-0.725
1890	0.283	0.107	0.078	0.000	-0.248	-0.055	0.012	0.026	0.000	-0.041	-0.975
1891	0.293	0.108	0.079	0.000	-0.250	-0.055	0.012	0.026	0.000	-0.020	-0.750
1892	0.302	0.109	0.080	0.000	-0.252	-0.056	0.012	0.026	0.000	0.004	-0.550
1893	0.311	0.110	0.081	0.000	-0.254	-0.056	0.013	0.027	0.000	0.035	-0.225
1894	0.319	0.111	0.082	0.000	-0.255	-0.057	0.013	0.027	0.000	0.072	-0.100
1895	0.325	0.111	0.083	0.000	-0.257	-0.057	0.013	0.027	0.000	0.052	-0.025
1896	0.330	0.112	0.083	0.000	-0.259	-0.058	0.013	0.028	0.000	0.023	-0.450
1897	0.334	0.113	0.084	0.000	-0.261	-0.058	0.013	0.028	0.000	-0.003	-0.425
1898	0.336	0.114	0.085	0.000	-0.262	-0.059	0.014	0.028	0.000	-0.012	-0.300

Table AII.1.2 | (continued)

Year	CO ₂	GHG Other*	O₃ (Trop)	O₃ (Strat)	Aerosol (Total)	LUC	H ₂ O (Strat)	BC Snow	Con– trails	Solar	Volcan
1899	0.337	0.115	0.086	0.000	-0.264	-0.059	0.014	0.028	0.000	-0.017	-0.125
1900	0.339	0.117	0.087	0.000	-0.266	-0.060	0.014	0.029	0.000	-0.028	-0.050
1901	0.341	0.120	0.088	0.000	-0.268	-0.061	0.014	0.029	0.000	-0.043	-0.025
1902	0.344	0.123	0.089	0.000	-0.270	-0.061	0.015	0.030	0.000	-0.048	-0.500
1903	0.349	0.127	0.090	0.000	-0.272	-0.062	0.015	0.030	0.000	-0.036	-1.800
1904	0.355	0.130	0.091	0.000	-0.274	-0.062	0.015	0.031	0.000	0.011	-0.800
1905	0.362	0.134	0.092	0.000	-0.276	-0.063	0.016	0.032	0.000	-0.016	-0.325
1906	0.369	0.138	0.092	0.000	-0.278	-0.063	0.016	0.032	0.000	0.028	-0.175
1907	0.376	0.141	0.093	0.000	-0.280	-0.064	0.016	0.033	0.000	-0.001	-0.225
1908	0.383	0.145	0.094	0.000	-0.282	-0.064	0.017	0.033	0.000	0.020	-0.250
1909	0.389	0.148	0.095	-0.001	-0.284	-0.065	0.017	0.034	0.000	-0.002	-0.100
1910	0.395	0.151	0.096	-0.001	-0.286	-0.065	0.017	0.035	0.000	-0.006	-0.075
1911	0.400	0.155	0.097	-0.001	-0.288	-0.066	0.018	0.035	0.000	-0.032	-0.050
1912	0.406	0.159	0.098	-0.001	-0.289	-0.066	0.018	0.035	0.000	-0.045	-0.475
1913	0.412	0.163	0.100	-0.001	-0.290	-0.067	0.019	0.035	0.000	-0.042	-0.600
1914	0.419	0.167	0.101	-0.001	-0.291	-0.068	0.019	0.035	0.000	-0.033	-0.250
1915	0.427	0.171	0.102	-0.001	-0.292	-0.068	0.019	0.035	0.000	0.013	-0.100
1916	0.436	0.175	0.103	-0.001	-0.293	-0.069	0.020	0.035	0.000	0.068	-0.07
1917	0.445	0.180	0.104	-0.001	-0.294	-0.069	0.020	0.035	0.000	0.086	-0.05
1918	0.453	0.185	0.104	-0.001	-0.294	-0.009	0.020	0.035	0.000	0.121	-0.050
1919	0.460	0.189	0.103	-0.001	-0.296	-0.070 -0.071		0.035	0.000	0.121	-0.050
							0.021				
1920	0.466	0.193	0.108	-0.001	-0.298	-0.071	0.022	0.035	0.000	0.039	-0.22
1921	0.472	0.196	0.109	-0.001	-0.302	-0.072	0.022	0.036	0.000	0.012	-0.20
1922	0.476	0.199	0.110	-0.002	-0.305	-0.073	0.022	0.036	0.000	-0.013	-0.07
1923	0.481	0.201	0.111	-0.002	-0.309	-0.073	0.023	0.036	0.000	-0.025	-0.02
1924	0.486	0.203	0.113	-0.002	-0.313	-0.074	0.023	0.036	0.000	-0.029	-0.07
1925	0.491	0.205	0.114	-0.002	-0.317	-0.075	0.024	0.036	0.000	-0.015	-0.07
1926	0.497	0.207	0.115	-0.002	-0.321	-0.076	0.024	0.036	0.000	0.020	-0.05
1927	0.503	0.210	0.116	-0.002	-0.325	-0.076	0.025	0.036	0.000	0.063	-0.05
1928	0.510	0.214	0.117	-0.002	-0.328	-0.077	0.025	0.037	0.000	0.033	-0.12
1929	0.517	0.218	0.119	-0.002	-0.332	-0.078	0.025	0.037	0.000	0.028	-0.25
1930	0.523	0.222	0.120	-0.003	-0.336	-0.079	0.026	0.037	0.000	0.048	-0.15
1931	0.530	0.226	0.122	-0.003	-0.338	-0.080	0.026	0.037	0.000	0.009	-0.12
1932	0.536	0.230	0.124	-0.003	-0.340	-0.081	0.027	0.038	0.000	-0.016	-0.20
1933	0.542	0.234	0.126	-0.003	-0.341	-0.081	0.027	0.038	0.000	-0.029	-0.17
1934	0.548	0.237	0.128	-0.003	-0.343	-0.082	0.027	0.039	0.000	-0.027	-0.10
1935	0.555	0.241	0.130	-0.003	-0.345	-0.083	0.028	0.039	0.000	-0.008	-0.10
1936	0.563	0.244	0.133	-0.003	-0.347	-0.084	0.028	0.040	0.000	0.068	-0.07
1937	0.570	0.247	0.135	-0.003	-0.349	-0.085	0.029	0.040	0.000	0.089	-0.07
1938	0.577	0.251	0.137	-0.003	-0.350	-0.086	0.029	0.040	0.000	0.080	-0.12
1939	0.584	0.254	0.139	-0.004	-0.352	-0.087	0.029	0.041	0.000	0.094	-0.10
1940	0.590	0.257	0.141	-0.004	-0.354	-0.088	0.030	0.041	0.000	0.070	-0.075
1941	0.595	0.261	0.143	-0.004	-0.358	-0.089	0.030	0.042	0.000	0.057	-0.050
1942	0.598	0.264	0.146	-0.004	-0.362	-0.090	0.030	0.042	0.000	0.030	-0.10
1943	0.599	0.267	0.148	-0.004	-0.366	-0.092	0.031	0.043	0.000	-0.005	-0.10
1944	0.599	0.270	0.150	-0.004	-0.370	-0.093	0.031	0.043	0.001	-0.011	-0.05
1945	0.599	0.273	0.152	-0.004	-0.374	-0.094	0.032	0.043	0.001	0.019	-0.050
1946	0.599	0.276	0.154	-0.005	-0.378	-0.095	0.032	0.044	0.001	0.025	-0.050
1947	0.598	0.279	0.156	-0.005	-0.382	-0.096	0.032	0.044	0.002	0.093	-0.050
1948	0.598	0.283	0.158	-0.005	-0.386	-0.097	0.033	0.045	0.002	0.146	-0.050

Table AII.1.2 | (continued)

Year	CO ₂	GHG Other*	O₃ (Trop)	O₃ (Strat)	Aerosol (Total)	LUC	H ₂ O (Strat)	BC Snow	Con– trails	Solar	Volcano
1949	0.601	0.287	0.161	-0.005	-0.390	-0.099	0.033	0.045	0.002	0.123	-0.075
1950	0.604	0.291	0.163	-0.005	-0.394	-0.100	0.034	0.046	0.002	0.110	-0.075
1951	0.608	0.296	0.168	-0.005	-0.409	-0.102	0.034	0.046	0.002	0.037	-0.050
1952	0.615	0.302	0.173	-0.006	-0.424	-0.103	0.035	0.047	0.002	0.045	-0.100
1953	0.623	0.308	0.178	-0.006	-0.439	-0.105	0.036	0.047	0.003	0.025	-0.075
1954	0.631	0.315	0.183	-0.006	-0.455	-0.106	0.036	0.048	0.003	0.003	-0.100
1955	0.641	0.323	0.188	-0.006	-0.470	-0.108	0.037	0.048	0.003	0.015	-0.050
1956	0.651	0.332	0.193	-0.007	-0.485	-0.109	0.038	0.049	0.003	0.064	-0.025
1957	0.662	0.341	0.198	-0.007	-0.500	-0.111	0.038	0.050	0.004	0.129	-0.025
1958	0.673	0.349	0.203	-0.007	-0.515	-0.112	0.039	0.050	0.004	0.194	0.000
1959	0.685	0.358	0.208	-0.008	-0.530	-0.114	0.040	0.051	0.004	0.159	0.000
1960	0.698	0.366	0.213	-0.008	-0.546	-0.116	0.041	0.051	0.004	0.151	-0.125
1961	0.709	0.374	0.218	-0.008	-0.563	-0.117	0.041	0.051	0.004	0.110	-0.275
1962	0.719	0.383	0.223	-0.009	-0.580	-0.119	0.042	0.051	0.004	0.051	-0.325
1963	0.727	0.392	0.228	-0.009	-0.598	-0.120	0.043	0.050	0.005	0.038	-1.150
1964	0.735	0.402	0.233	-0.010	-0.615	-0.122	0.044	0.050	0.005	0.019	-1.800
1965	0.748	0.412	0.239	-0.011	-0.632	-0.123	0.045	0.050	0.005	0.008	-1.075
1966	0.762	0.424	0.244	-0.011	-0.650	-0.125	0.046	0.050	0.006	0.012	-0.575
1967	0.778	0.437	0.249	-0.012	-0.667	-0.126	0.047	0.049	0.007	0.055	-0.375
1968	0.794	0.451	0.254	-0.012	-0.684	-0.127	0.048	0.049	0.007	0.086	-0.675
1969	0.734	0.466	0.259	-0.013	-0.701	-0.127 -0.129	0.049	0.049	0.009	0.077	-0.850
1970	0.828	0.483	0.264	-0.014	-0.719	-0.130	0.050	0.049	0.009	0.092	-0.425
1971	0.846	0.500	0.270	-0.016	-0.722	-0.131	0.050	0.049	0.009	0.082	-0.150
1972	0.865	0.519	0.277	-0.017	-0.725	-0.132	0.051	0.049	0.009	0.076	-0.100
1973	0.885	0.538	0.284	-0.018	-0.728	-0.134	0.052	0.049	0.010	0.044	-0.200
1974	0.904	0.558	0.290	-0.019	-0.732	-0.135	0.053	0.050	0.010	0.023	-0.325
1975	0.920	0.578	0.297	-0.021	-0.735	-0.136	0.054	0.050	0.010	0.006	-0.750
1976	0.938	0.598	0.304	-0.022	-0.738	-0.137	0.055	0.050	0.010	-0.003	-0.350
1977	0.960	0.617	0.310	-0.024	-0.741	-0.138	0.056	0.050	0.011	0.040	-0.125
1978	0.987	0.636	0.317	-0.026	-0.745	-0.138	0.057	0.051	0.011	0.129	-0.200
1979	1.018	0.656	0.324	-0.027	-0.748	-0.139	0.058	0.051	0.012	0.167	-0.225
1980	1.046	0.675	0.330	-0.029	-0.751	-0.140	0.059	0.051	0.012	0.150	-0.125
1981	1.066	0.696	0.335	-0.031	-0.763	-0.141	0.061	0.051	0.012	0.147	-0.125
1982	1.085	0.717	0.339	-0.033	-0.775	-0.141	0.062	0.050	0.012	0.094	-1.325
1983	1.110	0.737	0.343	-0.035	-0.788	-0.142	0.063	0.050	0.012	0.091	-1.875
1984	1.136	0.757	0.348	-0.037	-0.800	-0.143	0.064	0.049	0.013	0.016	-0.750
1985	1.158	0.776	0.352	-0.038	-0.812	-0.143	0.065	0.049	0.014	0.011	-0.325
1986	1.180	0.795	0.356	-0.040	-0.824	-0.144	0.065	0.049	0.015	0.012	-0.350
1987	1.208	0.813	0.360	-0.042	-0.836	-0.144	0.066	0.048	0.016	0.015	-0.250
1988	1.240	0.832	0.365	-0.044	-0.848	-0.145	0.067	0.048	0.017	0.095	-0.200
1989	1.266	0.853	0.369	-0.046	-0.861	-0.145	0.067	0.047	0.018	0.151	-0.150
1990	1.287	0.872	0.373	-0.048	-0.873	-0.146	0.068	0.047	0.019	0.118	-0.150
1991	1.305	0.888	0.375	-0.050	-0.878	-0.146	0.068	0.046	0.019	0.126	-1.350
1992	1.318	0.900	0.376	-0.052	-0.883	-0.146	0.069	0.045	0.020	0.137	-3.025
1993	1.332	0.909	0.378	-0.054	-0.888	-0.147	0.069	0.045	0.022	0.063	-1.225
1994	1.354	0.916	0.379	-0.055	-0.893	-0.147	0.069	0.044	0.024	0.027	-0.500
1995	1.381	0.923	0.380	-0.056	-0.897	-0.147	0.070	0.043	0.025	0.020	-0.250
1996	1.404	0.930	0.382	-0.057	-0.902	-0.148	0.070	0.043	0.027	0.003	-0.175
1997	1.428	0.937	0.383	-0.057	-0.907	-0.148	0.070	0.042	0.028	0.016	-0.125
1998	1.459	0.944	0.385	-0.057	-0.912	-0.148	0.071	0.041	0.029	0.062	-0.075

Table AII.1.2 | (continued)

Year	CO ₂	GHG Other*	O ₃ (Trop)	O ₃ (Strat)	Aerosol (Total)	LUC	H ₂ O (Strat)	BC Snow	Con- trails	Solar	Volcano
1999	1.489	0.952	0.386	-0.056	-0.917	-0.148	0.071	0.041	0.031	0.104	-0.050
2000	1.510	0.957	0.388	-0.056	-0.922	-0.149	0.071	0.040	0.033	0.127	-0.050
2001	1.532	0.961	0.389	-0.055	-0.920	-0.149	0.071	0.040	0.033	0.114	-0.050
2002	1.563	0.965	0.390	-0.055	-0.918	-0.149	0.071	0.040	0.033	0.108	-0.050
2003	1.594	0.969	0.391	-0.054	-0.916	-0.149	0.071	0.040	0.034	0.042	-0.075
2004	1.624	0.973	0.393	-0.053	-0.913	-0.149	0.071	0.040	0.038	0.012	-0.050
2005	1.654	0.976	0.394	-0.053	-0.911	-0.149	0.071	0.040	0.040	-0.011	-0.075
2006	1.684	0.981	0.395	-0.052	-0.909	-0.150	0.071	0.040	0.042	-0.016	-0.100
2007	1.711	0.986	0.396	-0.052	-0.907	-0.150	0.071	0.040	0.044	-0.017	-0.100
2008	1.736	0.992	0.398	-0.051	-0.904	-0.150	0.072	0.040	0.046	-0.025	-0.100
2009	1.762	0.999	0.399	-0.051	-0.902	-0.150	0.072	0.040	0.044	-0.027	-0.125
2010	1.789	1.005	0.400	-0.050	-0.900	-0.150	0.072	0.040	0.048	0.001	-0.100
2011	1.816	1.015	0.400	-0.050	-0.900	-0.150	0.073	0.040	0.050	0.030	-0.125

Notes:

See Figure 8.18, also Sections 8.1 and 11.3.6.1. To get the total ERF (effective radiative forcing) all components can be summed. Small negative values for CO₂ prior to 1800 are due to uncertainty in PI values. GHG other* includes only WMGHG. Aerosol is the sum of direct and indirect effects. LUC includes land use land cover change. Contrails combines aviation contrails (~20% of total) and contrail-induced cirrus. Values are annual average.

Table All.1.3 | Historical global decadal mean global surface air temperature (°C) relative to 1961–1990 average

Year		HadCRUT4		GISS	NCDC
Year	Lower (5%)	Median (50%)	Upper (95%)	Median (50%)	Median (50%)
1850 ^d	-0.404	-0.320	-0.243		
1860 ^d	-0.413	-0.335	-0.263		
1870 ^d	-0.326	-0.258	-0.195		
1880 ^d	-0.363	-0.297	-0.237	-0.296	-0.291
1890 ^d	-0.430	-0.359	-0.299	-0.361	-0.370
1900 ^d	-0.473	-0.410	-0.353	-0.418	-0.434
1910 ^d	-0.448	-0.387	-0.334	-0.435	-0.430
1920 ^d	-0.297	-0.242	-0.193	-0.311	-0.311
1930 ^d	-0.166	-0.116	-0.070	-0.172	-0.161
1940 ^d	-0.047	-0.002	+0.042	-0.085	-0.063
1950 ^d	-0.106	-0.061	-0.017	-0.134	-0.136
1960 ^d	-0.093	-0.054	-0.014	-0.104	-0.086
1970 ^d	-0.113	-0.077	-0.041	-0.058	-0.060
1980 ^d	+0.052	+0.095	+0.135	+0.118	+0.109
1990 ^d	+0.221	+0.270	+0.318	+0.275	+0.272
2000 ^d	+0.400	+0.453	+0.508	+0.472	+0.450
1986–2005 minus 1850–1900		+0.61 ± 0.06		N/A	N/A
1986–2005 minus 1886–1905		+0.66 ± 0.06		+0.66	+0.66
1986–2005 minus 1961–1990		+0.30 ± 0.03		+0.31	+0.30
1986–2005 minus 1980–1999		+0.11 ± 0.02		+0.11	+0.11
1946–2012 minus 1880–1945		+0.38 ± 0.04		+0.40	+0.39

Notes:

Decadal average (1990^d = 1990–1999) median global surface air temperatures from HadCRUT4, GISS and NCDC analyses. See Chapter 2, Sections 2.4.3 and 2.SM.4.3.3, Table 2.7, Figures 2.19, 2.20, 2.21 and 2.22, and also Figure 11.24a. Confidence intervals (5 to 95% for HadCRUT4 only) take into account measurement, sampling, bias and coverage uncertainties. Also shown are temperature increases between the CMIP5 reference period (1986–2005) and four earlier averaging periods, where 1850–1900 is the early instrumental temperature record. Uncertainties in these temperature differences are 5 to 95% confidence intervals.

AII.2: Anthropogenic Emissions

See discussion of Figure 8.2 and Section 11.3.5.

Table All.2.1a | Anthropogenic CO₂ emissions from fossil fuels and other industrial sources (FF) (PgC yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2000 ^d	6.82	6.82	6.82	6.82	6.90	6.90	7.10	6.92 ± 0.80	6.98 ± 0.81	6.76 ± 0.71	6.98 ± 0.81
2010 ^d	8.61	8.54	8.39	8.90	8.46	8.50	8.68	8.38 ± 1.03	8.63 ± 1.07	7.66 ± 1.64	8.27 ± 1.68
2020 ^d	9.00	9.79	8.99	11.38	11.01	10.00	10.26	8.46 ± 1.38	10.24±1.69	8.33 ± 1.82	10.30 ± 1.87
2030 ^d	7.21	10.83	9.99	13.79	13.53	11.20	11.62	6.81 ± 1.49	10.93±1.83	9.20 ± 1.55	12.36 ± 2.25
2040 ^d	4.79	11.25	11.47	16.69	15.01	12.20	12.66	4.61 ± 1.60	11.82±1.84	10.04 ± 1.42	15.09 ± 2.15
2050 ^d	3.21	10.91	13.00	20.03	16.49	11.70	13.70	2.96 ± 1.80	11.37±1.84	11.14 ± 1.55	18.15 ± 2.56
2060 ^d	1.55	9.42	14.73	23.32	18.49	10.20	14.68	1.77 ± 1.06	9.96 ± 2.17	13.22 ± 2.05	21.49 ± 2.42
2070 ^d	0.26	7.17	16.33	25.75	20.49	8.60	15.66	0.75 ± 0.90	7.86 ± 1.94	14.57 ± 1.88	23.62 ± 2.43
2080 ^d	-0.39	4.62	16.87	27.28	22.97	7.30	17.00	-0.09 ± 0.99	5.17 ± 1.77	15.51 ± 2.29	24.47 ± 2.70
2090 ^d	-0.81	4.19	14.70	28.24	25.94	6.10	18.70	-0.30 ± 1.09	5.13 ± 1.53	14.24 ± 1.81	25.30 ± 2.86
2100 ^d	-0.92	4.09	13.63	28.68	28.91	5.20	20.40	-0.63 ± 1.17	4.64 ± 1.34	12.78 ± 1.35	25.28 ± 2.73

Notes

Decadal mean values (2010^d = average of 2005–2014) are used for emissions because linear interpolation between decadal means conserves total emissions. Data are taken from RCP database (Meinshausen et al., 2011a; http://www.iiasa.ac.at/web-apps/tnt/RcpDb) and may be different from yearly snapshots; for 2100 the average (2095–2100) is used. SRES A2 and B1 and IS92a are taken from TAR Appendix II. RCPn.n[®] values are inferred from ESMs used in CMIP5. The model mean and standard deviation is shown. ESM fossil emissions are taken from 14 models as described in Jones et al. (2013) although not every model has performed every scenario. See Chapter 6, Sections 6.4.3, and 6.4.3.3, and Figure 6.25.

Table All.2.1b | Anthropogenic CO₂ emissions from agriculture, forestry, land use (AFOLU) (PgC yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	SRES-A2	SRES-B1	IS92a
2000 ^d	1.21	1.21	1.21	1.21	1.07	1.07	1.30
2010 ^d	1.09	0.94	0.93	1.08	1.12	0.78	1.22
2020 ^d	0.97	0.41	0.38	0.91	1.25	0.63	1.14
2030 ^d	0.79	0.23	-0.43	0.74	1.19	-0.09	1.04
2040 ^d	0.51	0.21	-0.67	0.65	1.06	-0.48	0.92
2050 ^d	0.29	0.23	-0.48	0.58	0.93	-0.41	0.80
2060 ^d	0.55	0.19	-0.27	0.50	0.67	-0.46	0.54
2070 ^d	0.55	0.11	-0.04	0.42	0.40	-0.42	0.28
2080 ^d	0.55	0.02	0.20	0.31	0.25	-0.60	0.12
2090 ^d	0.59	0.03	0.24	0.20	0.21	-0.78	0.06
2100 ^d	0.50	0.04	0.18	0.09	0.18	-0.97	-0.10

Notes:

See Table AII.2.1a.

Table All.2.1c | Anthropogenic total CO₂ emissions (PgC yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2000 ^d	8.03	8.03	8.03	8.03
2010 ^d	9.70	9.48	9.32	9.98
2020 ^d	9.97	10.20	9.37	12.28
2030 ^d	8.00	11.06	9.57	14.53
2040 ^d	5.30	11.46	10.80	17.33
2050 ^d	3.50	11.15	12.52	20.61
2060 ^d	2.10	9.60	14.46	23.83
2070 ^d	0.81	7.27	16.29	26.17
2080 ^d	0.16	4.65	17.07	27.60
2090 ^d	-0.23	4.22	14.94	28.44
2100 ^d	-0.42	4.13	13.82	28.77

Notes:

See Table AII.2.1a.

Table All.2.2 | Anthropogenic CH₄ emissions (Tg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
PI								202 ± 28	202 ± 28	202 ± 28	202 ± 28
2010 ^{total}								554 ± 56	554 ± 56	554 ± 56	554 ± 56
2010 ^{anthrop}								352 ± 45	352 ± 45	352 ± 45	352 ± 45
2010 ^d	322	322	321	345	370	349	433	352 ± 45	352 ± 45	352 ± 45	352 ± 45
2020 ^d	267	334	315	415	424	377	477	268 ± 34	366 ± 47	338 ± 43	424 ± 54
2030 ^d	238	338	326	484	486	385	529	246 ± 31	370 ± 47	354 ± 45	490 ± 63
2040 ^d	223	337	343	573	542	381	580	235 ± 30	368 ± 47	373 ± 47	585 ± 75
2050 ^d	192	331	354	669	598	359	630	198 ± 25	361 ± 46	385 ± 49	685 ± 88
2060 ^d	169	318	362	738	654	342	654	174 ± 22	346 ± 44	395 ± 50	754 ± 96
2070 ^d	161	301	359	779	711	324	678	169 ± 22	328 ± 42	390 ± 50	790 ±101
2080 ^d	155	283	336	820	770	293	704	162 ± 21	306 ± 39	369 ± 47	832 ±106
2090 ^d	149	274	278	865	829	266	733	155 ± 20	298 ± 38	293 ± 37	882 ±113
2100 ^d	143	267	250	885	889	236	762	148 ± 19	290 ± 37	267 ± 34	899 ±115

Year	MFR	CLE	MFR*	CLE*	Rog [∟]	Rog ^u	AME ^L	AME ^U
2000 ^d	366	366	303	303				
2010 ^d			193	335			332	333
2020 ^d			208	383	240	390	294	350
2030 ^d	339	478	229	443	217	428	293	376
2040 ^d							295	404
2050 ^d					178	454	291	426
2060 ^d							275	434
2070 ^d							254	436
2080 ^d							201	430
2090 ^d							183	417
2100 ^d					121	385	167	406

Notes:

For all anthropogenic emissions see Box 1.1 (Figure 4), Section 8.2.2, Figure 8.2, Sections 11.3.5.1.1 to 3, 11.3.5.2, 11.3.6.1. Ten-year average values (2010^d = average of 2005–2014; but 2100^d = average of 2095–2100) are given for RCP-based emissions, but single-year emissions are shown for other scenarios. RCPn.n = harmonized anthropogenic emissions as reported. SRES A2 and B1 and IS92a are from TAR Appendix II. AR5 RCPn.n[&] emissions have ± 1- σ (16 to 84% confidence) uncertainties and are based on the methodology of Prather et al. (2012) updated with CMIP5 results (Holmes et al., 2013; Voulgarakis et al., 2013). Projections of CH₄ lifetimes are harmonized based on PI (1750) and PD (2010) budgets that include uncertainties in lifetimes and abundances. All projected RCP abundances for CH₄ and N₂O (Tables AII.4.2 to AII.4.3) rescale each of the RCP emissions by a fixed factor equal to the ratio of RCP to AR5 anthropogenic emission estimates are shown as follows: MFR/CLE are the maximum feasible reduction and current legislation scenarios from Dentener et al. (2005; 2006), while MFR*/CLE* are the similarly labeled scenarios from Cofala et al. (2007). REF^L/REF^U are lower/upper bounds from their policy scenario. AME^L/AME^U are lower/upper bounds from Calvin et al. (2012). Rog^L/Rog^U are lower/upper bounds from Rogelj et et. (2011).

Table AII.2.3 | Anthropogenic N_2O emissions (TgN yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
PI								9.1 ± 1.0	9.1 ± 1.0	9.1 ± 1.0	9.1 ± 1.0
2010 ^{total}								15.7 ± 1.1	15.7 ± 1.1	15.7 ± 1.1	15.7 ± 1.1
2010 ^{anthrop}								6.5 ± 1.3	6.5 ± 1.3	6.5 ± 1.3	6.5 ± 1.3
2010 ^d	7.7	7.8	8.0	8.25	8.1	7.5	6.2	6.5 ± 1.3	6.5 ± 1.3	6.5 ± 1.3	6.5 ± 1.3
2020 ^d	7.4	8.2	8.1	9.5	9.6	8.1	7.1	6.1 ± 1.2	6.8 ± 1.3	6.3 ± 1.2	7.7 ± 1.5
2030 ^d	7.3	8.5	8.8	10.7	10.7	8.2	7.7	6.1 ± 1.2	7.1 ± 1.4	7.0 ± 1.4	8.6 ± 1.7
2040 ^d	7.1	8.7	9.7	11.9	11.3	8.3	8.0	6.0 ± 1.2	7.2 ± 1.4	7.8 ± 1.5	9.6 ± 1.9
2050 ^d	6.3	8.6	10.5	12.7	12.0	8.3	8.3	5.2 ± 1.0	7.1 ± 1.4	8.4 ± 1.6	10.3 ± 2.0
2060 ^d	5.8	8.5	11.3	13.4	12.9	7.7	8.3	4.8 ± 0.9	7.1 ± 1.4	9.1 ± 1.8	10.8 ± 2.1
2070 ^d	5.7	8.4	12.0	13.9	13.9	7.4	8.4	4.8 ± 0.9	7.0 ± 1.3	9.6 ± 1.9	11.2 ± 2.2
2080 ^d	5.6	8.2	12.3	14.5	14.8	7.0	8.5	4.7 ± 0.9	6.8 ± 1.3	9.9 ± 1.9	11.7 ± 2.3
2090 ^d	5.5	8.1	12.4	15.2	15.7	6.4	8.6	4.6 ± 0.9	6.8 ± 1.3	9.9 ± 1.9	12.3 ± 2.4
2100 ^d	5.3	8.1	12.2	15.7	16.5	5.7	8.7	4.4 ± 0.9	6.7 ± 1.3	9.8 ± 1.9	12.6 ± 2.4

Notes:

See Table AII.2.2.

Table All.2.4 | Anthropogenic SF₆ emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000 ^d	5.70	5.70	5.70	5.70	6.20	6.20
2010 ^d	6.14	5.68	7.43	6.93	7.60	5.60
2020 ^d	2.87	3.02	9.19	8.12	9.70	5.70
2030 ^d	1.96	2.89	9.58	9.83	11.60	7.20
2040 ^d	1.53	3.32	9.68	11.14	13.70	8.90
2050 ^d	0.76	3.77	9.78	12.07	16.00	10.40
2060 ^d	0.51	4.28	9.92	13.69	18.80	10.90
2070 ^d	0.42	4.87	10.05	13.72	19.80	9.50
2080 ^d	0.32	5.53	10.00	14.79	20.70	7.10
2090 ^d	0.19	5.99	9.86	15.96	23.40	6.50
2100 ^d	0.07	6.25	9.37	16.79	25.20	6.50

Notes

For this and all following emissions tables, see Table AII.2.2. RCPn.n = harmonized anthropogenic emissions as reported by RCPs (Lamarque et al., 2010; 2011; Meinshausen et al., 2011a). SRES A2 and B1 and IS92a from TAR Appendix II.

Table AII.2.5 | Anthropogenic CF₄ emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000 ^d	11.62	11.62	11.62	11.62	12.60	12.60
2010 ^d	13.65	10.69	19.10	11.04	20.30	14.50
2020 ^d	12.07	8.77	22.84	11.67	25.20	15.70
2030 ^d	7.36	8.47	23.46	12.29	31.40	16.60
2040 ^d	5.06	8.68	23.77	12.22	37.90	18.50
2050 ^d	2.95	9.04	23.73	12.37	45.60	20.90
2060 ^d	2.24	8.95	23.70	11.89	56.00	23.10
2070 ^d	2.07	9.04	23.45	11.81	63.60	22.50
2080 ^d	1.52	9.51	22.91	11.58	73.20	21.30
2090 ^d	1.22	10.50	21.98	11.14	82.80	22.50
2100 ^d	1.11	11.05	20.56	10.81	88.20	22.20

Table AII.2.6 | Anthropogenic C_2F_6 emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000 ^d	2.43	2.43	2.43	2.43	1.30	1.30
2010 ^d	4.29	2.34	2.62	2.50	2.00	1.50
2020 ^d	4.98	1.76	2.66	2.61	2.50	1.60
2030 ^d	2.33	1.80	2.69	2.75	3.10	1.70
2040 ^d	1.15	1.94	2.63	2.74	3.80	1.80
2050 ^d	0.55	2.03	2.56	2.79	4.60	2.10
2060 ^d	0.34	2.03	2.49	2.71	5.60	2.30
2070 ^d	0.26	1.99	2.50	2.74	6.40	2.20
2080 ^d	0.16	1.93	2.36	2.74	7.30	2.10
2090 ^d	0.10	1.97	2.26	2.68	8.30	2.20
2100 ^d	0.09	2.01	2.09	2.63	8.80	2.20

Table AII.2.7 | Anthropogenic C_6F_{14} emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2000 ^d	0.213	0.213	0.213	0.213
2010 ^d	0.430	0.430	0.429	0.430
2020 ^d	0.220	0.220	0.220	0.220
2030 ^d	0.123	0.123	0.123	0.123
2040 ^d	0.112	0.112	0.112	0.112
2050 ^d	0.109	0.109	0.109	0.109
2060 ^d	0.108	0.108	0.108	0.108
2070 ^d	0.106	0.106	0.106	0.106
2080 ^d	0.103	0.103	0.103	0.103
2090 ^d	0.097	0.097	0.097	0.097
2100 ^d	0.090	0.088	0.088	0.090

Table AII.2.8 | Anthropogenic HFC-23 emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000 ^d	10.4	10.4	10.4	10.4	13.0	13.0
2010 ^d	9.1	9.1	9.1	9.1	15.0	15.0
2020 ^d	2.4	2.4	2.4	2.4	5.0	5.0
2030 ^d	0.7	0.7	0.7	0.7	2.0	2.0
2040 ^d	0.4	0.4	0.4	0.4	2.0	2.0
2050 ^d	0.3	0.3	0.3	0.3	1.0	1.0
2060 ^d	0.1	0.1	0.1	0.1	1.0	1.0
2070 ^d	0.1	0.1	0.1	0.1	1.0	1.0
2080 ^d	0.0	0.0	0.0	0.0	1.0	1.0
2090 ^d	0.0	0.0	0.0	0.0	1.0	1.0
2100 ^d	0.0	0.0	0.0	0.0	1.0	1.0

Table AII.2.9 | Anthropogenic HFC-32 emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000 ^d	3.5	3.5	3.5	3.5	0.0	0.0
2010 ^d	20.1	20.1	20.1	20.1	4.0	3.0
2020 ^d	55.4	55.4	55.4	55.4	6.0	6.0
2030 ^d	71.2	71.2	71.2	71.2	9.0	8.0
2040 ^d	78.8	78.8	78.8	78.8	11.0	10.0
2050 ^d	76.5	76.5	76.5	76.5	14.0	14.0
2060 ^d	83.6	83.6	83.6	83.6	17.0	14.0
2070 ^d	92.7	92.7	92.7	92.7	20.0	14.0
2080 ^d	95.4	95.4	95.4	95.4	24.0	14.0
2090 ^d	91.0	91.0	91.0	91.0	29.0	14.0
2100 ^d	82.7	82.7	82.7	82.7	33.0	13.0

Table All.2.10 | Anthropogenic HFC-125 emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a
2000 ^d	8	8	8	8	0	0	0
2010 ^d	29	18	10	32	11	11	1
2020 ^d	82	29	9	63	21	21	9
2030 ^d	108	32	9	79	29	29	46
2040 ^d	122	31	10	99	35	36	111
2050 ^d	122	30	10	115	46	48	175
2060 ^d	138	27	11	128	56	48	185
2070 ^d	157	24	11	139	66	48	194
2080 ^d	165	24	12	144	79	48	199
2090 ^d	161	23	12	147	94	46	199
2100 ^d	150	23	12	148	106	44	199

Table AII.2.11 | Anthropogenic HFC-134a emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a
2000 ^d	72	72	72	72	80	80	148
2010 ^d	146	140	139	153	166	163	290
2020 ^d	173	184	153	255	252	249	396
2030 ^d	193	208	159	331	330	326	557
2040 ^d	209	229	163	402	405	414	738
2050 ^d	203	248	167	461	506	547	918
2060 ^d	225	246	172	506	633	550	969
2070 ^d	252	260	175	553	758	544	1020
2080 ^d	263	299	177	602	915	533	1047
2090 ^d	256	351	175	651	1107	513	1051
2100 ^d	239	400	171	696	1260	486	1055

Table AII.2.12 | Anthropogenic HFC-143a emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000 ^d	7.5	7.5	7.5	7.5	0.0	0.0
2010 ^d	23.1	14.0	7.0	23.2	9.0	8.0
2020 ^d	59.1	17.4	5.4	34.1	16.0	15.0
2030 ^d	74.7	20.3	6.0	38.5	22.0	21.0
2040 ^d	81.8	23.1	6.6	45.1	27.0	26.0
2050 ^d	79.0	25.6	7.1	49.8	35.0	35.0
2060 ^d	86.1	25.9	7.7	52.3	43.0	35.0
2070 ^d	94.2	28.2	8.3	54.1	51.0	35.0
2080 ^d	95.1	33.5	8.7	52.7	61.0	35.0
2090 ^d	88.7	39.6	9.0	50.2	73.0	34.0
2100 ^d	79.2	45.1	9.1	47.3	82.0	32.0

Table AII.2.13 | Anthropogenic HFC-227ea emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000 ^d	1.7	1.7	1.7	1.7	0.0	0.0
2010 ^d	7.0	5.3	6.9	8.5	12.0	13.0
2020 ^d	2.6	1.4	2.5	2.7	17.0	18.0
2030 ^d	0.9	0.3	0.8	0.7	21.0	24.0
2040 ^d	0.8	0.2	0.7	0.7	26.0	30.0
2050 ^d	0.4	0.1	0.3	0.4	32.0	39.0
2060 ^d	0.2	0.0	0.1	0.2	40.0	40.0
2070 ^d	0.1	0.0	0.1	0.1	48.0	39.0
2080 ^d	0.1	0.0	0.1	0.1	58.0	38.0
2090 ^d	0.1	0.0	0.0	0.1	70.0	36.0
2100 ^d	0.1	0.0	0.0	0.1	80.0	34.0

Table AII.2.14 | Anthropogenic HFC-245fa emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000 ^d	11	11	11	11	0	0
2010 ^d	42	46	53	74	59	60
2020 ^d	32	86	65	143	79	80
2030 ^d	7	95	67	186	98	102
2040 ^d	0	97	68	181	121	131
2050 ^d	0	95	69	163	149	173
2060 ^d	0	87	70	150	190	173
2070 ^d	0	82	71	138	228	170
2080 ^d	0	80	70	129	276	166
2090 ^d	0	81	68	123	334	159
2100 ^d	0	83	65	130	388	150

Table All.2.15 | Anthropogenic HFC-43-10mee emissions (Gg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000 ^d	0.6	0.6	0.6	0.6	0.0	0.0
2010 ^d	5.6	5.6	5.6	5.6	7.0	6.0
2020 ^d	7.2	7.2	7.2	7.2	8.0	7.0
2030 ^d	8.1	8.1	8.1	8.1	8.0	8.0
2040 ^d	9.4	9.4	9.4	9.1	9.0	9.0
2050 ^d	10.8	10.8	10.8	10.4	11.0	11.0
2060 ^d	11.1	11.1	11.1	12.1	12.0	11.0
2070 ^d	11.0	11.0	11.0	13.9	14.0	11.0
2080 ^d	11.0	11.0	10.9	16.2	16.0	11.0
2090 ^d	10.7	10.7	10.7	18.9	19.0	11.0
2100 ^d	10.5	10.5	10.5	21.4	22.0	10.0

Table All.2.16 | Anthropogenic CO emissions (Tg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a
2000 ^d	1071	1071	1071	1071	877	877	1048
2010 ^d	1035	1041	1045	1054	977	789	1096
2020 ^d	984	997	1028	1058	1075	751	1145
2030 ^d	930	986	1030	1019	1259	603	1207
2040 ^d	879	948	1046	960	1344	531	1282
2050 ^d	825	875	1033	907	1428	471	1358
2060 ^d	779	782	996	846	1545	459	1431
2070 ^d	718	678	939	799	1662	456	1504
2080 ^d	668	571	879	759	1842	426	1576
2090 ^d	638	520	835	721	2084	399	1649
2100 ^d	612	483	798	694	2326	363	1722

Year	MFR	CLE	REF ^L	REF	POL ^L	POL ^U
2000 ^d	977	977	708	1197	706	1197
2010 ^d			771	1408	769	1408
2020 ^d			755	1629	705	1611
2030 ^d	729	904	707	1865	592	1803
2040 ^d			695	2165	620	2002
2050 ^d			591	2487	482	2218
2060 ^d			504	2787	363	2409
2070 ^d			450	3052	328	2558
2080 ^d			438	3279	268	2635
2090 ^d			410	3510	259	2714
2100 ^d			363	3735	253	2796

Table AII.2.17 | Anthropogenic NMVOC emissions (Tg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	CLE	MFR
2000 ^d	213	213	213	213	141	141	126	147	147
2010 ^d	216	209	215	217	155	141	142		
2020 ^d	213	197	214	224	179	140	158		
2030 ^d	202	201	217	225	202	131	173	146	103
2040 ^d	192	201	222	218	214	123	188		
2050 ^d	179	191	220	209	225	116	202		
2060 ^d	167	180	214	202	238	111	218		
2070 ^d	152	167	204	194	251	103	234		
2080 ^d	140	152	193	189	275	99	251		
2090 ^d	132	145	182	182	309	96	267		
2100 ^d	126	141	174	177	342	87	283		

Table AII.2.18 | Anthropogenic NO_X emissions (TgN yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	CLE	MFR
2000 ^d	38.5	38.5	38.5	38.5	53.4	53.4
2010 ^d	43.5	42.4	43.1	43.5		
2020 ^d	47.5	43.5	43.3	48.1		
2030 ^d	50.8	45.2	46.2	52.1	69.8	69.8
2040 ^d	53.2	46.3	49.8	55.6		
2050 ^d	55.5	46.4	53.0	58.4		
2060 ^d	58.4	46.0	56.5	60.6		
2070 ^d	61.2	45.2	59.5	62.4		
2080 ^d	63.3	44.3	60.9	63.8		
2090 ^d	65.2	43.9	62.1	65.3		
2100 ^d	67.0	43.6	61.8	66.9		

Year	MFR	CLE	REF ^L	REF	POL ^L	POL ^U
2000 ^d	38.0	38.0	29.1	41.6	29.1	41.6
2010 ^d			26.0	50.2	23.9	50.1
2020 ^d			26.3	60.4	21.6	59.2
2030 ^d	23.1	42.9	24.4	71.8	16.5	67.4
2040 ^d			21.5	86.3	14.1	75.3
2050 ^d			17.0	101.7	11.6	83.3
2060 ^d			13.2	115.7	11.4	89.8
2070 ^d			12.0	127.5	10.5	94.6
2080 ^d			11.5	137.2	9.6	97.2
2090 ^d			12.0	146.2	8.8	100.1
2100 ^d			13.0	155.0	8.0	104.0

Odd nitrogen (NO $_{x}$) emissions occur as NO or NO $_{2}$, measured here as Tg of N.

Table AII.2.19 | Anthropogenic NH₃ emissions (TgN yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	CLE	MFR
2000 ^d	38.5	38.5	38.5	38.5	53.4	53.4
2010 ^d	43.5	42.4	43.1	43.5		
2020 ^d	47.5	43.5	43.3	48.1		
2030 ^d	50.8	45.2	46.2	52.1	69.8	69.8
2040 ^d	53.2	46.3	49.8	55.6		
2050 ^d	55.5	46.4	53.0	58.4		
2060 ^d	58.4	46.0	56.5	60.6		
2070 ^d	61.2	45.2	59.5	62.4		
2080 ^d	63.3	44.3	60.9	63.8		
2090 ^d	65.2	43.9	62.1	65.3		
2100 ^d	67.0	43.6	61.8	66.9		

Table AII.2.20 | Anthropogenic SO_X emissions (TgS yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a
2000 ^d	55.9	55.9	55.9	55.9	69.0	69.0	79.0
2010 ^d	54.9	54.8	55.8	51.9	74.7	73.9	95.0
2020 ^d	44.5	50.3	49.9	47.6	99.5	74.6	111.0
2030 ^d	30.8	43.2	42.7	42.3	112.5	78.2	125.8
2040 ^d	20.9	35.0	41.9	33.5	109.0	78.5	139.4
2050 ^d	16.0	26.5	37.8	26.8	105.4	68.9	153.0
2060 ^d	13.8	21.0	34.0	23.0	89.6	55.8	151.8
2070 ^d	11.9	16.7	23.5	20.3	73.7	44.3	150.6
2080 ^d	9.9	13.2	15.9	18.3	64.7	36.1	149.4
2090 ^d	8.0	12.0	12.7	14.9	62.5	29.8	148.2
2100 ^d	6.7	11.4	10.8	13.1	60.3	24.9	147.0

Year	MFR	CLE	REF ^L	REF ^U	POL ^L	POL ^u
2000 ^d	55.6	55.6	50.6	76.4	50.6	76.4
2010 ^d			53.1	81.8	52.7	78.7
2020 ^d			56.9	84.8	47.7	77.8
2030 ^d	17.9	58.8	60.1	86.7	29.8	76.3
2040 ^d			52.5	82.9	19.0	72.0
2050 ^d			44.2	72.3	12.4	61.7
2060 ^d			32.8	73.9	9.5	52.9
2070 ^d			30.5	77.7	7.8	49.8
2080 ^d			29.6	81.1	6.2	50.5
2090 ^d			22.8	84.5	5.1	52.5
2100 ^d			18.0	88.0	4.0	54.0

Anthropogenic sulphur emissions as $\mathrm{SO}_{\mathrm{2}}\textsc{,}$ measured here as Tg of S.

Table AII.2.21 | Anthropogenic OC aerosols emissions (Tg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	MFR*	CLE*
2000 ^d	35.6	35.6	35.6	35.6	81.4	81.4	81.4	35.0	35.0
2010 ^d	36.6	34.6	36.2	35.6	89.3	74.5	85.2	29.2	34.6
2020 ^d	36.6	30.8	36.1	34.5	97.0	71.5	89.0	28.6	32.6
2030 ^d	35.3	29.2	36.0	33.2	111.4	59.9	93.9	27.9	30.9
2040 ^d	32.3	28.0	36.4	31.6	118.1	54.2	99.8		
2050 ^d	30.3	26.8	36.5	30.1	124.7	49.5	105.8		
2060 ^d	29.6	25.0	35.7	28.5	133.9	48.6	111.5		
2070 ^d	28.2	22.8	34.4	27.4	143.1	48.3	117.2		
2080 ^d	27.0	20.7	33.4	26.4	157.2	46.0	122.9		
2090 ^d	26.4	19.9	32.7	25.1	176.2	43.8	128.6		
2100 ^d	25.5	19.5	32.2	24.1	195.2	41.0	134.4		

For both MFR* and CLE* 23 Tg is added to Cofala et al. (2007) values to include biomass burning.

Table AII.2.22 | Anthropogenic BC aerosols emissions (Tg yr⁻¹)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	MFR*	CLE*
2000 ^d	7.88	7.88	7.88	7.88	12.40	12.40	12.40	7.91	7.91
2010 ^d	8.49	8.13	8.13	8.06	13.60	11.30	13.00	6.31	8.01
2020 ^d	8.27	7.84	7.77	7.66	14.80	10.90	13.60	5.81	7.41
2030 ^d	7.03	7.36	7.53	7.04	17.00	9.10	14.30	5.41	7.01
2040 ^d	5.80	6.81	7.39	6.22	18.00	8.30	15.20		
2050 ^d	5.00	6.21	7.07	5.67	19.00	7.50	16.10		
2060 ^d	4.46	5.56	6.48	5.22	20.40	7.40	17.00		
2070 ^d	3.99	4.88	5.75	4.88	21.80	7.40	17.90		
2080 ^d	3.70	4.23	5.15	4.66	24.00	7.00	18.70		
2090 ^d	3.55	4.01	4.70	4.43	26.80	6.70	19.60		
2100 ^d	3.39	3.88	4.41	4.27	29.70	6.20	20.50		

Notes:

For both MFR* and CLE* 2.6 Tg added to Cofala et al. (2007) values to include biomass burning.

Table AII.2.23 | Anthropogenic nitrogen fixation (Tg-N yr⁻¹)

Year	Historical	SRES A1 + Biofuel	SRES A2	SRES B1	SRES B2	FAO2000 Baseline ^a	FAO2000 Improved ^a	Tilman 2001 ª	Tubiello 2007 ª
1910	0.0								
1920	0.2								
1925	0.6								
1930	0.9								
1935	1.3								
1940	2.2								
1950	3.7								
1955	6.8								
1960	9.5								
1965	18.7								
1970	31.6								
1971	33.3								
1972	36.2								
1973	39.1								
1974	38.6								
1975	43.7								

Table AII.2.23 (continued)

Year	Historical	SRES A1 + Biofuel	SRES A2	SRES B1	SRES B2	FAO2000 Baseline ^a	FAO2000 Improved ^a	Tilman 2001 a	Tubiello 2007 ª
1975	43.7								
1976	46.4								
1977	49.9								
1978	53.8								
1979	57.4								
1980	60.6								
1981	60.3								
1982	61.3								
1983	67.1								
1984	70.9								
1985	70.2								
1986	72.5								
1987	75.8								
1988	79.5								
1989	78.9								
1990	77.1								
1991	75.5								
1992	73.7								
1993	72.3								
1994	72.4								
1995	78.5								
1996	82.6					77.8	77.8		
1997	81.4								
1998	82.8								
1999	84.9								
2000	82.1							87.0	
2001	82.9								
2002	85.2								
2003	90.2								
2004	91.7								
2005	94.2								
2007	98.4								
2010		104.1	101.9	101.7	96.5				
2015		-	-	-	-	106.8	88.0		
2020		122.6	110.7	111.2	100.9			135.0	
2030		141.1	117.6	118.4	103.3	124.5	96.2		
2040		153.3	130.7	122.2	103.5				
2050		165.5	131.1	123.2	101.9			236.0	
2060		171.3	134.0	121.4	99.2				
2070		177.0	132.1	117.5	95.6				
2080		180.1	138.1	111.6	91.5				205
2090		186.0	146.5	108.8	91.3				
2100		192.5	149.8	104.1	91.0				

(a) See Chapter 6, Figure 6.30 and Erisman et al. (2008) for details and sources.

AII.3: Natural Emissions

Table AII.3.1a | Net land (natural and land use) CO₂ emissions (PgC yr⁻¹)

Year	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2000 ^d	-1.02 ± 0.87	-1.14 ± 0.87	-0.92 ± 0.93	-1.14 ± 0.87
2010 ^d	-1.49 ± 1.02	-1.85 ± 0.96	-1.03 ± 1.65	-1.30 ± 1.64
2020 ^d	-1.24 ± 1.35	-2.83 ± 1.47	-1.79 ± 1.95	-1.43 ± 1.82
2030 ^d	-1.28 ± 1.53	-2.84 ± 1.59	−2.37 ± 1.54	-1.76 ± 2.22
2040 ^d	-1.21 ± 1.33	-3.25 ± 1.58	−2.27 ± 1.46	-2.15 ± 2.13
2050 ^d	-1.00 ± 1.53	-3.07 ± 1.54	-1.98 ± 1.57	-2.35 ± 2.45
2060 ^d	-0.76 ± 0.83	-2.80 ± 1.83	-2.46 ± 2.01	-2.71 ± 2.38
2070 ^d	-0.68 ± 0.84	-2.59 ± 1.73	-2.40 ± 2.06	-2.57 ± 2.42
2080 ^d	-0.15 ± 0.81	-2.04 ± 1.48	−2.22 ± 2.12	-1.96 ± 2.64
2090 ^d	-0.03 ± 0.99	-2.12 ± 1.38	−2.77 ± 1.96	-1.63 ± 2.70
2100 ^d	0.36 ± 0.95	-1.54 ± 1.25	-2.13 ± 1.32	-1.27 ± 2.90

Notes:

Ten-year average values are shown (2010 d = average of 2005–2014). CO₂ emissions are inferred from ESMs used in CMIP5 (Jones et al., 2013). See notes Table All.2.1a and Chapter 6, Sections 6.4.3 and 6.4.3.3 and Figure 6.24.

Table AII.3.1b | Net ocean CO₂ emissions (PgC yr⁻¹)

Year	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2000 ^d	-2.09 ± 0.19	-2.14 ± 0.32	−2.10 ± 0.17	-2.14 ± 0.32
2010 ^d	−2.44 ± 0.22	-2.50 ± 0.42	-2.44 ± 0.20	-2.53 ± 0.43
2020 ^d	−2.70 ± 0.26	−2.75 ± 0.46	-2.59 ± 0.22	−3.02 ± 0.51
2030 ^d	-2.59 ± 0.30	-2.98 ± 0.52	-2.69 ± 0.22	-3.47 ± 0.54
2040 ^d	−2.22 ± 0.32	−3.16 ± 0.56	-2.88 ± 0.27	-3.96 ± 0.67
2050 ^d	−1.83 ± 0.33	−3.22 ± 0.60	-3.16 ± 0.31	-4.47 ± 0.76
2060 ^d	−1.52 ± 0.30	−3.12 ± 0.63	-3.52 ± 0.36	-4.92 ± 0.84
2070 ^d	−1.23 ± 0.23	-2.82 ± 0.61	-3.79 ± 0.41	-5.24 ± 0.97
2080 ^d	−0.99 ± 0.27	-2.46 ± 0.59	-4.02 ± 0.44	-5.40 ± 1.14
2090 ^d	−0.85 ± 0.26	−2.22 ± 0.53	-3.96 ± 0.43	-5.45 ± 1.18
2100 ^d	-0.77 ± 0.26	-2.14 ± 0.47	-3.84 ± 0.42	-5.44 ± 1.22

Notes:

See Table AII.3.1.a.

All.4: Abundances of the Well-Mixed Greenhouse Gases

Table All.4.1 | CO₂ abundance (ppm)

Year	Observed	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	Min	RCP8.5 ^{&}	Max
PI	278 ± 2	278	278	278	278	278	278	278			
2011 obs	390.5 ± 0.3										
2000		368.9	368.9	368.9	368.9	368	368	368			
2005		378.8	378.8	378.8	378.8					378.8	
2010		389.3	389.1	389.1	389.3	388	387	388	366	394	413
2020		412.1	411.1	409.4	415.8	416	411	414	386	425	449
2030		430.8	435.0	428.9	448.8	448	434	442	412	461	496
2040		440.2	460.8	450.7	489.4	486	460	472	443	504	555
2050		442.7	486.5	477.7	540.5	527	485	504	482	559	627
2060		441.7	508.9	510.6	603.5	574	506	538	530	625	713
2070		437.5	524.3	549.8	677.1	628	522	575	588	703	810
2080		431.6	531.1	594.3	758.2	690	534	615	651	790	914
2090		426.0	533.7	635.6	844.8	762	542	662	722	885	1026
2100		420.9	538.4	669.7	935.9	846	544	713	794	985 ± 97	1142

Notes:

For observations (2011^{obs}) see Chapter 2; and for projections see Box 1.1 (Figure 2), Sections 6.4.3.1, 11.3.5.1.1, 11.3.5.1.1. RCPn.n refers to values taken directly from the published RCP scenarios using the MAGICC model (Meinshausen et al., 2011a; 2011b). These are harmonized to match observations up to 2005 (378.8 ppm) and project future abundances thereafter. RCP8.5° shows the average and assessed 90% confidence interval for year 2100, plus the min-max full range derived from the CMIP5 archive for all years (P. Friedlingstein, based on Friedlingstein et al., 2006). 11 ESMs participated (BCC-CSM-1, CanESM2, CESM1-BGC, GFDL-ESM2G, HadGem-2ES, INMCM4, IPSLCM5-LR, MIROC-ESM, MPI-ESM-LR, MRI-ESM1, and Nor-ESM1-ME), running the RCP8.5 anthropogenic emission scenario forced by the RCP8.5 climate change scenario (see Figure 12.36). All abundances are mid-year. Projected values for SRES A2 and B1 and IS92 are the average of reference models taken from the TAR Appendix II.

Table AII.4.2 | CH₄ abundance (ppb)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
PI	720	720	720	720				722 ± 25	722 ± 25	722 ± 25	722 ± 25
2011 ^{obs}								1803 ± 4	1803 ± 4	1803 ± 4	1803 ± 4
2000	1751	1751	1751	1751	1760	1760	1760				
2010	1773	1767	1769	1779	1861	1827	1855	1795 ± 18	1795 ± 18	1795 ± 18	1795 ± 18
2020	1731	1801	1786	1924	1997	1891	1979	1716 ± 23	1847 ± 21	1811 ± 22	1915 ± 25
2030	1600	1830	1796	2132	2163	1927	2129	1562 ± 38	1886 ± 28	1827 ± 28	2121 ± 44
2040	1527	1842	1841	2399	2357	1919	2306	1463 ± 50	1903 ± 37	1880 ± 36	2412 ± 74
2050	1452	1833	1895	2740	2562	1881	2497	1353 ± 60	1899 ± 47	1941 ± 48	2784 ± 116
2060	1365	1801	1939	3076	2779	1836	2663	1230 ± 71	1872 ± 59	1994 ± 61	3152 ± 163
2070	1311	1745	1962	3322	3011	1797	2791	1153 ± 78	1824 ± 72	2035 ± 77	3428 ± 208
2080	1285	1672	1940	3490	3252	1741	2905	1137 ± 88	1756 ± 87	2033 ± 94	3624 ± 250
2090	1268	1614	1819	3639	3493	1663	3019	1135 ± 98	1690 ± 100	1908 ± 111	3805 ± 293
2100	1254	1576	1649	3751	3731	1574	3136	1127 ± 106	1633 ± 110	1734 ± 124	3938 ± 334

Notes

RCPn.n refers to values taken directly from the published RCP scenarios using the MAGICC model (Meinshausen et al., 2011b) and initialized in year 2005 at 1754 ppb. Values for SRES A2 and B1 and IS92 are from the TAR Appendix II. RCPn.n^a values are best estimates with uncertainties (68% confidence intervals) from Chapter 11 (Section 11.3.5) based on Holmes et al. (2013) and using RCP^a emissions and uncertainties tabulated above. For RCP^a the PI, year 2011 and year 2010 values are based on observations. RCP models used slightly different PI abundances than recommended here (Table AII.1.1, Chapter 2).

Table AII.4.3 | N₂O abundance (ppb)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
PI	272	272	272	272				270 ± 7	270 ± 7	270 ± 7	270 ± 7
2011 ^{obs}								324 ± 1	324 ± 1	324 ± 1	324 ± 1
2000	316	316	316	316	316	316	316				
2010	323	323	323	323	325	324	324	323 ± 3	323 ± 3	323 ± 3	323 ± 3
2020	329	330	330	332	335	333	333	330 ± 4	331 ± 4	331 ± 4	332 ± 4
2030	334	337	337	342	347	341	343	336 ± 5	339 ± 5	338 ± 5	342 ± 6
2040	339	344	345	354	360	349	353	342 ± 6	346 ± 7	346 ± 7	353 ± 8
2050	342	351	355	367	373	357	363	346 ± 8	353 ± 9	355 ± 9	365 ± 11
2060	343	356	365	381	387	363	372	349 ± 9	360 ± 10	364 ± 11	377 ± 13
2070	344	361	376	394	401	368	381	351 ± 10	365 ± 12	374 ± 13	389 ± 16
2080	344	366	386	408	416	371	389	352 ± 11	370 ± 13	384 ± 15	401 ± 18
2090	344	369	397	421	432	374	396	353 ± 11	374 ± 14	393 ± 17	413 ± 21
2100	344	372	406	435	447	375	403	354 ± 12	378 ± 16	401 ± 19	425 ± 24

See notes Table AII.4.2.

Table AII.4.4 | SF_6 abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	Obs
2011 ^{obs}							7.3 ± 0.1
2010	7.0	6.9	7.0	7.0	7	7	
2020	8.9	8.7	10.3	9.9	11	9	
2030	9.7	9.7	14.1	13.4	15	12	
2040	10.4	10.9	17.9	17.6	20	15	
2050	10.8	12.3	21.7	22.1	26	19	
2060	11.0	13.8	25.6	27.2	32	23	
2070	11.2	15.6	29.5	32.6	40	27	
2080	11.3	17.6	33.4	38.1	48	30	
2090	11.4	19.9	37.3	44.1	56	33	
2100	11.4	22.3	41.0	50.5	65	35	

Notes:

Projected SF₆ and PFC abundances (Tables All.4.4 to All.4.7) taken directly from RCPs (Meinshausen et al., 2011a). Observed values shown for year 2011.

Table AII.4.5 | CF₄ abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	Obs
2011 obs							79.0
2010	84	83	85	83	92	91	
2020	93	90	99	91	107	101	
2030	99	95	115	99	125	111	
2040	103	101	130	107	148	122	
2050	106	107	146	115	175	135	
2060	108	113	162	123	208	150	
2070	109	119	177	131	246	164	
2080	110	125	193	138	291	179	
2090	111	131	207	146	341	193	
2100	112	138	222	153	397	208	

Table AII.4.6 | C₂F₆ abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	Obs
2011 obs							4.2
2010	4.1	3.9	3.9	3.9	4	4	
2020	6.2	4.8	5.0	5.0	5	4	
2030	7.9	5.5	6.2	6.1	6	5	
2040	8.6	6.3	7.3	7.2	7	6	
2050	8.9	7.1	8.4	8.4	9	7	
2060	9.1	7.9	9.4	9.6	11	8	
2070	9.2	8.8	10.5	10.7	14	8	
2080	9.3	9.6	11.5	11.8	17	9	
2090	9.3	10.4	12.5	13.0	20	10	
2100	9.3	11.3	13.4	14.1	23	11	

Table All.4.7 | C₆F₁₄ abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2010	0.07	0.07	0.07	0.07
2020	0.13	0.13	0.13	0.13
2030	0.16	0.16	0.16	0.16
2040	0.18	0.18	0.18	0.18
2050	0.20	0.20	0.20	0.20
2060	0.21	0.21	0.21	0.21
2070	0.23	0.23	0.23	0.23
2080	0.25	0.25	0.25	0.25
2090	0.27	0.27	0.27	0.27
2100	0.28	0.28	0.28	0.28

Table AII.4.8 | HFC-23 abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2011 ^{obs}							24.0	24.0	24.0	24.0
2010	22.9	22.9	22.9	22.9	26	26	23.2 ± 1	23.2 ± 1	23.2 ± 1	23.2 ± 1
2020	27.2	27.2	27.2	27.2	33	33	26.6 ± 1	26.6 ± 1	26.6 ± 1	26.6 ± 1
2030	27.0	27.0	27.1	27.1	35	35	26.3 ± 1	26.3 ± 1	26.3 ± 1	26.3 ± 1
2040	26.5	26.5	26.6	26.6	35	35	25.7 ± 1	25.8 ± 1	25.8 ± 1	25.8 ± 1
2050	25.8	25.9	25.9	26.0	35	35	24.9 ± 1	25.0 ± 1	25.1 ± 1	25.1 ± 1
2060	25.0	25.1	25.1	25.3	35	34	24.0 ± 1	24.2 ± 1	24.3 ± 1	24.4 ± 1
2070	24.1	24.2	24.4	24.6	34	34	23.0 ± 1	23.4 ± 1	23.4 ± 1	23.6 ± 1
2080	23.3	23.3	23.5	23.8	34	33	22.1 ± 1	22.5 ± 1	22.6 ± 1	22.8 ± 1
2090	22.4	22.5	22.7	23.0	34	33	21.2 ± 1	21.6 ± 1	21.8 ± 1	22.1 ± 1
2100	21.6	21.6	21.9	22.3	33	32	20.3 ± 1	20.8 ± 1	21.0 ± 1	21.3 ± 1

Notes:

RCPn.n HFC abundances (Tables All.4.8 to All.4.15) are as reported (Meinshausen et al., 2011a). SRES A2 and B1 and IS92a (where available) are taken from TAR Appendix II. Observed values are shown for 2011 (see Chapter 2, and Table All.1.1). The AR5 RCPn.n[®] abundances are calculated starting with observed abundances (adopted for 2010) and future tropospheric OH changes using the methodology of Prather et al. (2012), updated for uncertainty in lifetime and scenario changes in OH using Holmes et al. (2013) and ACCMIP results (Stevenson et al., 2013; Voulgarakis et al., 2013). Projected RCP[®] abundances are best estimates with 68% confidence range as uncertainties. See also notes Tables All.4.2 and All.5.9.

Table AII.4.9 | HFC-32 abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2011 ^{obs}							4.9	4.9	4.9	4.9
2010	5.7	5.7	5.7	5.7	1	1	4.1 ± 0	4.1 ± 0	4.1 ± 0	4.1 ± 0
2020	21.0	21.0	21.1	21.1	3	3	23.8 ± 2	24.0 ± 2	24.0 ± 2	24.0 ± 2
2030	34.7	35.2	35.5	35.8	4	4	38.1 ± 5	39.1 ± 5	39.1 ± 5	39.2 ± 5
2040	41.1	41.9	42.4	43.6	6	5	44.7 ± 6	46.7 ± 6	46.9 ± 6	47.8 ± 6
2050	41.9	42.8	43.9	46.2	7	7	44.3 ± 7	47.6 ± 7	48.2 ± 7	50.3 ± 8
2060	43.1	43.8	45.6	48.8	9	8	45.0 ± 7	49.6 ± 8	50.6 ± 8	53.8 ± 8
2070	47.9	48.1	50.7	54.7	11	8	49.4 ± 8	54.9 ± 8	56.8 ± 9	60.3 ± 9
2080	51.3	50.5	54.0	58.6	14	8	53.8 ± 9	58.2 ± 9	61.4 ± 10	64.7 ± 10
2090	51.0	49.6	52.8	58.2	17	8	54.0 ± 9	56.9 ±10	60.6 ± 10	64.4 ± 11
2100	47.5	45.6	47.4	53.8	20	8	50.5 ± 9	51.8 ± 9	55.2 ± 10	59.6 ± 11

Table AII.4.10 | HFC-125 abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2011obs								9.6	9.6	9.6	9.6
2010	7.1	6.4	5.7	7.7	2	2	0	8.2 ± 1	8.2 ± 1	8.2 ± 1	8.2 ± 1
2020	27.4	14.3	7.6	25.7	8	8	2	30.9 ± 1	16.3 ± 1	9.6 ± 1	27.6 ± 1
2030	60.0	23.2	9.2	48.5	16	16	12	64.1 ± 3	25.2 ± 2	10.9 ± 1	51.0 ± 3
2040	90.5	29.7	10.6	72.0	24	24	40	95.5 ± 7	31.9 ± 3	12.2 ± 1	75.9 ± 5
2050	114.5	34.0	11.8	97.6	34	33	87	119.5 ± 11	36.6 ± 4	13.3 ± 2	103 ± 8
2060	133.4	36.0	12.9	122.9	45	43	137	139.0 ± 15	39.0 ± 5	14.4 ± 2	130 ± 12
2070	154.8	35.8	13.9	147.1	58	49	177	160.8 ± 20	39.4 ± 6	15.5 ± 2	156 ± 16
2080	176.2	34.8	14.8	168.7	72	54	210	183.2 ± 24	39.1 ± 6	16.6 ± 2	180 ± 20
2090	192.3	34.0	15.5	185.8	89	57	236	200.9 ± 29	38.7 ± 7	17.4 ± 3	199 ± 25
2100	200.2	33.2	15.8	198.9	107	58	255	210.5 ± 34	38.1 ± 7	18.0 ± 3	215 ± 30

Table AII.4.11 | HFC-134a abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2011								63 ± 1	63 ± 1	63 ± 1	63 ± 1
2010	56	56	56	56	55	55	94	58 ± 3	58 ± 3	58 ± 3	58 ± 3
2020	96	95	90	112	111	108	183	97 ± 5	98 ± 5	91 ± 5	117 ± 5
2030	122	129	109	180	170	165	281	123 ± 9	132 ± 9	110 ± 8	184 ± 11
2040	142	154	121	245	231	223	401	143 ± 12	157 ± 12	122 ± 10	249 ± 17
2050	153	175	129	311	299	293	537	150 ± 15	178 ± 16	130 ± 12	314 ± 24
2060	160	187	135	370	382	352	657	155 ± 16	192 ± 19	137 ± 14	373 ± 32
2070	175	193	141	423	480	380	743	168 ± 18	200 ± 21	143 ± 15	427 ± 39
2080	191	205	144	471	594	391	807	184 ± 21	216 ± 23	148 ± 16	476 ± 47
2090	200	229	144	517	729	390	850	193 ± 23	242 ± 26	150 ± 18	524 ± 56
2100	199	262	141	561	877	379	878	192 ± 25	275 ± 30	148 ± 19	570 ± 64

Table AII.4.12 | HFC-143a abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2011							12.0	12.0	12.0	12.0
2010	10.2	9.4	8.4	10.8	3	2	11 ± 1	11 ± 1	11 ± 1	11 ± 1
2020	33.9	17.8	10.1	28.2	10	9	37 ± 1	19 ± 1	12 ± 1	29 ± 1
2030	72.1	26.8	12.1	46.8	20	18	75 ± 2	28 ± 1	14 ± 1	48 ± 1
2040	109.9	36.0	14.0	65.6	32	29	13 ± 4	38 ± 1	16 ± 1	67 ± 2
2050	142.1	45.4	16.0	85.7	45	43	144 ± 6	47 ± 2	18 ± 1	88 ± 3
2060	168.6	54.0	18.1	105.2	62	57	170 ± 8	56 ± 3	20 ± 1	107 ± 4
2070	196.1	61.4	20.1	123.2	81	68	197 ± 11	64 ± 3	22 ± 1	126 ± 6
2080	222.2	69.7	22.2	138.7	103	77	223 ± 14	73 ± 4	24 ± 2	142 ± 8
2090	242.0	80.2	24.0	150.2	129	85	243 ± 17	85 ± 5	26 ± 2	154 ± 9
2100	252.9	92.6	25.6	157.9	157	90	254 ± 20	98 ± 6	28 ± 2	163 ± 11

Table AII.4.13 | HFC-227ea abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2011							0.65	0.65	0.65	0.65
2010	1.43	1.28	1.42	1.56	2	2	0.6 ± 0.1	0.6 ± 0.1	0.6 ± 0.1	0.6 ± 0.1
2020	2.81	2.10	2.78	3.30	5	6	2.0 ± 0.1	1.5 ± 0.1	2.0 ± 0.1	2.4 ± 0.1
2030	2.48	1.71	2.44	2.77	10	10	2.0 ± 0.1	1.3 ± 0.1	2.0 ± 0.1	2.2 ± 0.1
2040	2.09	1.35	2.04	2.29	14	15	1.8 ± 0.1	1.1 ± 0.1	1.8 ± 0.1	2.0 ± 0.2
2050	1.74	1.06	1.68	1.92	19	21	1.6 ± 0.2	1.0 ± 0.1	1.6 ± 0.2	1.8 ± 0.2
2060	1.35	0.81	1.31	1.55	25	27	1.3 ± 0.2	0.8 ± 0.1	1.3 ± 0.2	1.5 ± 0.2
2070	1.04	0.61	1.01	1.23	32	31	1.1 ± 0.2	0.6 ± 0.1	1.1 ± 0.2	1.3 ± 0.2
2080	0.81	0.45	0.78	0.99	40	34	0.9 ± 0.2	0.5 ± 0.1	0.9 ± 0.2	1.1 ± 0.2
2090	0.63	0.34	0.59	0.79	49	35	0.8 ± 0.2	0.4 ± 0.1	0.8 ± 0.2	0.9 ± 0.2
2100	1.43	1.28	1.42	1.56	2	2	0.6 ± 0.2	0.3 ± 0.1	0.6 ± 0.2	0.8 ± 0.2

Table AII.4.14 | HFC-245fa abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2011							1.24	1.24	1.24	1.24
2010	7.5	7.3	8.2	9.5	8	8	1 ± 0.2	1 ± 0.2	1 ± 0.2	1 ± 0.2
2020	12.1	19.3	18.1	31.5	17	17	10.2 ± 1	18.9 ± 2	16.4 ± 2	31.0 ± 4
2030	7.4	28.2	21.3	51.2	23	23	6.6 ± 1.5	29.2 ± 4	21.6 ± 3	53.1 ± 8
2040	2.3	31.2	22.6	61.7	29	29	2.2 ± 1.0	33.0 ± 6	23.7 ± 4	63.8 ± 10
2050	0.6	31.9	23.3	62.0	36	38	0.7 ± 0.5	34.1 ± 7	24.6 ± 5	64.4 ± 12
2060	0.2	30.6	23.8	59.1	46	43	0.2 ± 0.2	32.9 ± 7	25.3 ± 5	61.7 ± 13
2070	0.0	28.2	24.2	55.3	58	44	0.1 ± 0.1	30.8 ± 7	25.9 ± 5	58.1 ± 13
2080	0.0	26.4	24.3	51.5	72	43	0.0 ± 0.1	29.3 ± 7	26.4 ± 6	54.4 ± 12
2090	0.0	25.8	23.6	48.0	88	42	0.0 ± 0.0	28.6 ± 6	26.0 ± 6	51.0 ± 12
2100	0.0	26.0	22.3	47.3	105	40	0.0 ± 0.0	28.6 ± 6	24.9 ± 6	50.6 ± 11

Table AII.4.15 | HFC-43-10mee abundance (ppt)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}
2011							_	_	_	_
2010	0.52	0.52	0.52	0.52	1	1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
2020	1.46	1.46	1.46	1.47	2	1	1.2 ± 0.1	1.2 ± 0.1	1.2 ± 0.1	1.2 ± 0.1
2030	2.09	2.11	2.12	2.14	2	2	2.0 ± 0.2	2.1 ± 0.2	2.1 ± 0.2	2.1 ± 0.2
2040	2.61	2.64	2.66	2.68	3	2	2.7 ± 0.3	2.8 ± 0.3	2.8 ± 0.3	2.8 ± 0.3
2050	3.13	3.17	3.22	3.23	3	3	3.3 ± 0.4	3.4 ± 0.4	3.4 ± 0.4	3.4 ± 0.4
2060	3.56	3.61	3.70	3.83	4	3	3.7 ± 0.6	3.9 ± 0.6	4.0 ± 0.6	4.1 ± 0.6
2070	3.78	3.81	3.96	4.52	4	4	3.9 ± 0.7	4.3 ± 0.7	4.3 ± 0.7	4.9 ± 0.7
2080	3.89	3.88	4.08	5.27	5	4	4.1 ± 0.8	4.4 ± 0.8	4.6 ± 0.8	5.8 ± 0.9
2090	3.93	3.87	4.10	6.14	6	4	4.2 ± 0.8	4.5 ± 0.8	4.7 ± 0.9	6.7 ± 1.0
2100	3.91	3.81	3.99	7.12	7	4	4.2 ± 0.9	4.4 ± 0.9	4.6 ± 0.9	7.9 ± 1.2

Table All.4.16 | Montreal Protocol greenhouse gas abundances (ppt)

Year	CFC-11	CFC-12	CFC-113	CFC-114	CFC-115	CCI ₄	CH ₃ CCl ₃	HCFC-22
2011*	238 ± 1	528 ± 2	74.5 ± 0.5	15.8	8.4	86 ± 2	6.4 ± 0.4	213 ± 2
2010	240.9	532.5	75.6	16.4	8.4	87.6	8.3	206.8
2020	213.0	492.8	67.4	15.8	8.4	70.9	1.5	301.8
2030	182.6	448.0	59.9	15.1	8.4	54.4	0.2	265.4
2040	153.5	405.8	53.3	14.4	8.4	40.3	0.0	151.0
2050	127.2	367.3	47.4	13.6	8.4	29.2	0.0	71.1
2060	104.4	332.4	42.1	12.9	8.3	20.0	0.0	31.5
2070	85.2	300.7	37.4	12.3	8.3	13.6	0.0	13.7
2080	69.1	272.1	33.3	11.6	8.2	9.3	0.0	5.9
2090	55.9	246.2	29.6	11.1	8.2	6.3	0.0	2.6
2100	45.1	222.8	26.3	10.5	8.1	4.3	0.0	1.1

Year	HCFC-141b	HCFC-142b	Halon 1211	Halon 1202	Halon 1301	Halon 2402	CH₃Br	CH₃Cl
2011*	21.4 ± 0.5	21.2 ± 0.5	4.07	0.00	3.23	0.45	7.1	534
2010	20.3	20.5	4.07	0.00	3.20	0.46	7.2	550
2020	30.9	30.9	3.08	0.00	3.29	0.38	7.1	550
2030	34.4	31.2	2.06	0.00	3.19	0.27	7.1	550
2040	27.9	23.3	1.30	0.00	2.97	0.18	7.1	550
2050	19.3	14.9	0.78	0.00	2.71	0.12	7.1	550
2060	12.4	9.0	0.46	0.00	2.43	0.07	7.1	550
2070	7.7	5.2	0.26	0.00	2.16	0.05	7.1	550
2080	4.7	3.0	0.15	0.00	1.90	0.03	7.1	550
2090	2.9	1.7	0.08	0.00	1.66	0.02	7.1	550
2100	1.7	0.9	0.05	0.00	1.44	0.01	7.1	550

Present day (2011*) is from Chapter 2; projections are from Scenario A1, WMO Ozone Assessment (WMO 2010).

AII.5: Column Abundances, Burdens, and Lifetimes

Table All.5.1 | Stratospheric O₃ column changes (DU)

Year	Obs	RCP2.6	RCP4.5	RCP6.0	RCP8.5
1850		17	17	17	17
1980	11	15	15	15	15
2000	269 ± 8	276 ± 9	276 ± 9	276 ± 9	276 ± 9
2010	0	2	-1	1	-2
2020		4	0	3	2
2030		8	4	7	5
2040		9	7	10	9
2050		12	10	13	12
2060		13	12	14	15
2070		13	11	15	16
2080		12	11	16	15
2090		13	12	16	18
2100		15	13	17	20

Notes

Observed O₃ columns and trends taken from WMO (Douglass and Filetov, 2010), subtracting tropospheric column O₃ (Table AII.5.2) with uncertainty estimates driven by polar variability. CMIP5 RCP results are from Eyring et al. (2013). The multi-model mean is derived from the CMIP5 models with predictive (interactive or semi-offline) stratospheric and tropospheric ozone chemistry. The absolute value is shown for year 2000. All other years are differences relative to (minus) year 2000. The multi-model standard deviation is shown only for year 2000; it does not change much over time; and, representing primarily the spread in absolute O₃ column, it is larger than the standard deviation of the changes (not evaluated here). All models used the same projections for ozone-depleting substances. Near-term differences in projected O₃ columns across scenarios reflect model sampling (i.e., different sets of models contributing to each RCP), while long-term changes reflect changes in N₂O, CH₄ and climate. See Section 11.3.5.1.2.

Table All.5.2 | Tropospheric O₃ column changes (DU)

Year		CM	IP5			ACC	MIP	
	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5
1850	-10.2	-10.2	-10.2	-10.2	-8.9	-8.9	-8.9	-8.9
1980	-2.0	-2.0	-2.0	-2.0	-1.3	-1.3	-1.3	-1.3
2000	31.1 ± 3.3	31.1 ± 3.3	31.1 ± 3.3	31.1 ± 3.3	30.8 ± 2.1	30.8 ± 2.1	30.8 ± 2.1	30.8 ± 2.1
2010	1.1	0.6	0.8	0.8				
2020	1.0	0.9	1.0	2.1				
2030	0.6	1.5	1.4	3.5	-1.3	1.0	-0.1	1.8
2040	0.5	1.6	2.1	4.5				
2050	0.0	1.7	2.4	5.7				
2060	-0.7	1.3	2.6	7.1				
2070	-1.6	0.5	2.3	8.1				
2080	-2.5	-0.1	2.0	8.9				
2090	-2.8	-0.4	1.5	9.5				
2100	-3.1	-0.5	1.1	10.2	-5.4	-2.2	-2.6	5.3

Table AII.5.2 (continued)

Year	A2	B1	IS92a	CLE	MFR
1850					
1980					
2000	34.0	34.0	34.0	32.6	32.6
2010	1.7	0.8	1.5		
2020	4.2	1.6	3.1		
2030	6.8	1.9	4.7	1.5 ± 0.8	-1.4 ± 0.4
2040	8.6	1.8	6.1		
2050	10.2	1.0	7.6		
2060	11.7	0.0	8.9		
2070	13.2	-0.9	10.0		
2080	15.3	-1.9	11.1		
2090	18.0	-2.8	12.1		
2100	20.8	-3.9	13.2		

RCP results from CMIP5 (Eyring et al., 2013) and ACCMIP (Young et al., 2013). For ACCMIP all models have interactive tropospheric ozone chemistry and are included, in contrast to the CMIP5 multimodel mean which includes only those models with predictive (interactive or semi-offline) stratospheric and tropospheric ozone chemistry. The absolute value is shown for year 2000. All other years are differences relative to (minus) year 2000. The multi-model standard deviation is shown only for year 2000; it does not change much over time; and, representing primarily the spread in absolute O₃ columns, it is larger than the standard deviation of the changes across individual models (not evaluated here). SRES values are from TAR Appendix II. CLE/MFR scenarios are from Dentener et al. (2005, 2006): CLE includes climate change, MFR does not. See Section 11.3.5.1.2.

Table AII.5.3 | Total aerosol optical depth (AOD)

Year	(Min)	Historical	(Max)	RCP2.6	RCP4.5	RCP6.0	RCP8.5
1860 ^d	0.056	0.101	0.161	0.094	0.101	0.092	0.100
1870 ^d	0.058	0.102	0.162	0.095	0.102	0.094	0.101
1180 ^d	0.058	0.102	0.163	0.095	0.102	0.094	0.101
1890 ^d	0.059	0.104	0.164	0.098	0.104	0.096	0.103
1900 ^d	0.058	0.105	0.166	0.099	0.105	0.097	0.104
1910 ^d	0.059	0.107	0.169	0.101	0.107	0.099	0.106
1920 ^d	0.060	0.108	0.170	0.102	0.108	0.100	0.107
1930 ^d	0.061	0.110	0.173	0.104	0.110	0.101	0.109
1940 ^d	0.061	0.111	0.175	0.105	0.111	0.103	0.110
1950 ^d	0.060	0.115	0.181	0.108	0.115	0.106	0.113
1960 ^d	0.064	0.122	0.192	0.116	0.122	0.113	0.120
1970 ^d	0.065	0.130	0.204	0.123	0.130	0.120	0.128
1980 ^d	0.066	0.135	0.221	0.127	0.135	0.124	0.133
1990 ^d	0.068	0.138	0.231	0.129	0.138	0.126	0.135
2000 ^d	0.068	0.136	0.232	0.127	0.136	0.124	0.134
2010 ^d				0.127	0.137	0.124	0.133
2020 ^d				0.123	0.134	0.122	0.132
2030 ^d				0.117	0.130	0.119	0.130
2040 ^d				0.111	0.126	0.118	0.126
2050 ^d				0.108	0.123	0.117	0.124
2060 ^d				0.106	0.119	0.116	0.121
2070 ^d				0.105	0.116	0.110	0.120
2080 ^d				0.103	0.114	0.107	0.118
2090 ^d				0.102	0.112	0.106	0.118
2100 ^d				0.101	0.111	0.105	0.117
Number of models		21		15	21	13	19

Notes

Multi-model decadal global means (2030^d = 2025–2034, 2100^d = 2095–2100) from CMIP5 models reporting AOD. The numbers of models for each experiment are indicated in the bottom row. The full range of models (given only for historical period for AOD and AAOD) is large and systematic in that models tend to scale relative to one another. Historical estimates for different RCPs vary because of the models included. RCP4.5 included the full set of CMIP5 models contributing aerosol results (21). The standard deviation of the models is 28% (AOD) and 62% (AAOD) (N. Mahowald, CMIP5 archive; Lamarque et al., 2013; Shindell et al., 2013). See Sections 11.3.5.1.3 and 11.3.6.1.

Table AII.5.4 | Absorbing aerosol optical depth (AAOD)

Year	(Min)	Historical	(Max)	RCP2.6	RCP4.5	RCP6.0	RCP8.5
1860 ^d	0.00050	0.0035	0.0054	0.0033	0.0035	0.0031	0.0035
1870 ^d	0.00060	0.0035	0.0054	0.0033	0.0035	0.0032	0.0036
1180 ^d	0.00060	0.0036	0.0054	0.0034	0.0036	0.0032	0.0036
1890 ^d	0.00060	0.0036	0.0055	0.0035	0.0036	0.0033	0.0037
1900 ^d	0.00070	0.0037	0.0056	0.0035	0.0037	0.0033	0.0038
1910 ^d	0.00070	0.0038	0.0057	0.0036	0.0038	0.0034	0.0038
1920 ^d	0.00070	0.0038	0.0058	0.0036	0.0038	0.0034	0.0039
1930 ^d	0.00070	0.0038	0.0057	0.0036	0.0038	0.0034	0.0038
1940 ^d	0.00070	0.0038	0.0057	0.0036	0.0038	0.0034	0.0039
1950 ^d	0.00070	0.0038	0.0058	0.0036	0.0038	0.0034	0.0039
1960 ^d	0.00080	0.0040	0.0059	0.0038	0.0040	0.0036	0.0040
1970 ^d	0.00090	0.0042	0.0065	0.0040	0.0042	0.0038	0.0043
1980 ^d	0.00100	0.0046	0.0073	0.0044	0.0046	0.0042	0.0046
1990 ^d	0.00110	0.0049	0.0079	0.0047	0.0049	0.0044	0.0049
2000 ^d	0.00120	0.0050	0.0084	0.0048	0.0050	0.0045	0.0051
2010 ^d				0.0050	0.0051	0.0046	0.0051
2020 ^d				0.0050	0.0050	0.0045	0.0050
2030 ^d				0.0047	0.0049	0.0045	0.0049
2040 ^d				0.0043	0.0048	0.0044	0.0047
2050 ^d				0.0041	0.0046	0.0044	0.0046
2060 ^d				0.0039	0.0044	0.0043	0.0045
2070 ^d				0.0037	0.0042	0.0041	0.0044
2080 ^d				0.0037	0.0040	0.0039	0.0043
2090 ^d				0.0036	0.0039	0.0038	0.0043
2100 ^d				0.0036	0.0039	0.0038	0.0042
Number	of models	14		11	14	10	12

See notes Table AII.5.3.

Table AII.5.5 | Sulphate aerosol atmospheric burden (TgS)

Year	(Min)	Historical	(Max)	RCP2.6	RCP4.5	RCP6.0	RCP8.5
1860 ^d	0.09	0.61	1.42	0.60	0.61	0.57	0.60
1870 ^d	0.10	0.62	1.45	0.62	0.62	0.59	0.61
1180 ^d	0.12	0.65	1.49	0.64	0.65	0.61	0.64
1890 ^d	0.16	0.68	1.57	0.67	0.68	0.64	0.66
1900 ^d	0.21	0.73	1.65	0.73	0.73	0.70	0.72
1910 ^d	0.23	0.79	1.80	0.79	0.79	0.76	0.78
1920 ^d	0.23	0.83	1.84	0.83	0.83	0.80	0.81
1930 ^d	0.24	0.87	1.94	0.88	0.87	0.85	0.86
1940 ^d	0.25	0.93	2.05	0.95	0.93	0.91	0.92
1950 ^d	0.27	1.03	2.21	1.05	1.03	1.01	1.01
1960 ^d	0.31	1.25	2.67	1.29	1.25	1.24	1.23
1970 ^d	0.35	1.48	3.14	1.52	1.48	1.45	1.47
1980 ^d	0.37	1.58	3.33	1.62	1.58	1.54	1.58
1990 ^d	0.37	1.59	3.31	1.63	1.59	1.55	1.60
2000 ^d	0.37	1.55	3.17	1.59	1.55	1.53	1.56

Table AII.5.5 | (continued)

Year	(Min)	Historical	(Max)	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2010 ^d				1.57	1.59	1.52	1.54
2020 ^d				1.43	1.54	1.43	1.51
2030 ^d				1.21	1.44	1.33	1.44
2040 ^d				1.03	1.31	1.34	1.31
2050 ^d				0.94	1.16	1.29	1.20
2060 ^d				0.90	1.05	1.24	1.13
2070 ^d				0.86	0.96	1.06	1.08
2080 ^d				0.81	0.88	0.92	1.05
2090 ^d				0.76	0.85	0.86	0.98
2100 ^d				0.71	0.83	0.80	0.94
Number	of models	18		12	18	10	16

See notes Table All.5.3. The standard deviation of the models is about 50% for sulphate, OC and BC aerosol loadings (N. Mahowald, CMIP5 archive; Lamarque et al., 2013; Shindell et al., 2013).

Table AII.5.6 | OC aerosol atmospheric burden (Tg)

Year	(Min)	Historical	(Max)	RCP2.6	RCP4.5	RCP6.0	RCP8.5
1860 ^d	0.34	1.08	2.7	1.09	1.08	1.13	1.12
1870 ^d	0.35	1.09	2.7	1.10	1.09	1.14	1.13
1180 ^d	0.36	1.09	2.7	1.11	1.09	1.15	1.14
1890 ^d	0.35	1.10	2.8	1.12	1.10	1.16	1.15
1900 ^d	0.36	1.11	2.8	1.12	1.11	1.16	1.15
1910 ^d	0.33	1.10	2.8	1.11	1.10	1.15	1.15
1920 ^d	0.34	1.08	2.7	1.09	1.08	1.12	1.13
1930 ^d	0.33	1.07	2.6	1.07	1.07	1.11	1.12
1940 ^d	0.33	1.07	2.6	1.07	1.07	1.11	1.12
1950 ^d	0.36	1.08	2.6	1.08	1.08	1.11	1.12
1960 ^d	0.41	1.13	2.7	1.13	1.13	1.17	1.17
1970 ^d	0.46	1.20	2.9	1.22	1.20	1.26	1.24
1980 ^d	0.54	1.28	3.1	1.32	1.28	1.36	1.33
1990 ^d	0.53	1.38	3.3	1.44	1.38	1.48	1.43
2000 ^d	0.53	1.41	3.5	1.47	1.41	1.52	1.46
2010 ^d				1.59	1.21	1.55	1.29
2020 ^d				1.59	1.12	1.56	1.26
2030 ^d				1.56	1.08	1.55	1.25
2040 ^d				1.47	1.06	1.57	1.22
2050 ^d				1.41	1.04	1.57	1.20
2060 ^d				1.40	1.01	1.56	1.17
2070 ^d				1.36	0.96	1.55	1.14
2080 ^d				1.33	0.92	1.55	1.13
2090 ^d				1.32	0.90	1.54	1.10
2100 ^d				1.30	0.89	1.55	1.09
Number	of models	19		12	19	10	17

Notes:

See notes Table AII.5.5.

Table AII.5.7 | BC aerosol atmospheric burden (Tg)

Year	(Min)	Historical	(Max)	RCP2.6	RCP4.5	RCP6.0	RCP8.5
1860 ^d	0.037	0.059	0.127	0.058	0.059	0.057	0.059
1870 ^d	0.039	0.063	0.133	0.062	0.063	0.061	0.064
1180 ^d	0.040	0.068	0.139	0.066	0.068	0.065	0.069
1890 ^d	0.043	0.075	0.149	0.070	0.075	0.070	0.076
1900 ^d	0.045	0.082	0.156	0.076	0.082	0.075	0.083
1910 ^d	0.048	0.089	0.167	0.081	0.089	0.081	0.091
1920 ^d	0.049	0.092	0.167	0.083	0.092	0.082	0.095
1930 ^d	0.049	0.090	0.161	0.082	0.090	0.081	0.092
1940 ^d	0.051	0.091	0.162	0.082	0.091	0.082	0.093
1950 ^d	0.053	0.094	0.165	0.085	0.094	0.085	0.096
1960 ^d	0.061	0.102	0.179	0.094	0.102	0.094	0.105
1970 ^d	0.071	0.115	0.201	0.107	0.115	0.107	0.117
1980 ^d	0.088	0.141	0.245	0.130	0.141	0.130	0.144
1990 ^d	0.098	0.157	0.274	0.146	0.157	0.145	0.161
2000 ^d	0.101	0.164	0.293	0.153	0.164	0.152	0.169
2010 ^d				0.170	0.174	0.157	0.170
2020 ^d				0.169	0.174	0.152	0.164
2030 ^d				0.144	0.166	0.147	0.153
2040 ^d				0.120	0.155	0.144	0.138
2050 ^d				0.103	0.141	0.138	0.127
2060 ^d				0.091	0.126	0.127	0.118
2070 ^d				0.081	0.110	0.113	0.110
2080 ^d				0.075	0.094	0.101	0.106
2090 ^d				0.071	0.087	0.092	0.102
2100 ^d				0.068	0.084	0.087	0.099
Number	of models	19		13	19	11	17

See notes Table AII.5.5.

Table AII.5.8 | CH₄ atmospheric lifetime (yr) against loss by tropospheric OH

Year	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}	RCP2.6^	RCP4.5^	RCP6.0^	RCP8.5^
2000	11.2 ± 1.3	11.2 ± 1.3	11.2 ± 1.3	11.2 ± 1.3	11.2 ± 1.3	11.2 ± 1.3	11.2 ± 1.3	11.2 ± 1.3
2010	11.2 ± 1.3	11.2 ± 1.3	11.2 ± 1.3	11.2 ± 1.3				
2020	11.0 ± 1.3	11.2 ± 1.3	11.2 ± 1.3	11.2 ± 1.3				
2030	10.8 ± 1.3	11.3 ± 1.4	11.3 ± 1.4	11.4 ± 1.4	10.6 ± 1.4	11.4 ± 2.1	11.1 ± 1.4	11.2 ± 1.4
2040	10.6 ± 1.3	11.3 ± 1.4	11.4 ± 1.4	11.8 ± 1.4				
2050	10.2 ± 1.3	11.3 ± 1.4	11.5 ± 1.4	12.2 ± 1.5				
2060	9.9 ± 1.3	11.2 ± 1.4	11.6 ± 1.4	12.6 ± 1.6				
2070	9.9 ± 1.4	11.2 ± 1.5	11.8 ± 1.5	12.6 ± 1.7				
2080	10.4 ± 1.5	11.1 ± 1.5	11.9 ± 1.6	12.6 ± 1.8				
2090	10.4 ± 1.6	10.9 ± 1.6	11.7 ± 1.7	12.6 ± 1.8				
2100	10.6 ± 1.6	10.7 ± 1.6	11.4 ± 1.8	12.5 ± 1.9	10.7 ± 1.6	10.1 ± 1.5	11.1 ± 1.8	12.1 ± 2.0

Notes

RCPn.n 8 lifetimes based on best estimate with uncertainty for 2000–2010 (Prather et al., 2012) and then projecting changes in key factors (Holmes et al., 2013). All uncertainties are 68% confidence intervals. RCPn.n $^{\wedge}$ lifetimes are from ACCMIP results (Voulgarakis et al., 2013) scaled to 11.2 \pm 1.3 yr for year 2000; the ACCMIP mean and standard deviation in 2000 are 9.8 \pm 1.5 yr. Projected ACCMIP values combine the present day uncertainty with the model standard deviation of future change. Note that the total atmospheric lifetime of CH $_{4}$ must include other losses (e.g., stratosphere, surface, tropospheric chlorine), and for 2010 it is 9.1 \pm 0.9 yr, see Chapter 8, Section 11.3.5.1.1.

Table AII.5.9 | N₂O atmospheric lifetime (yr)

Year	RCP2.6 ^{&}	RCP4.5 ^a	RCP6.0 ^{&}	RCP8.5 ^{&}
2010	131 ± 10	131 ± 10	131 ± 10	131 ± 10
2020	130 ± 10	131 ± 10	131 ± 10	131 ± 10
2030	130 ± 10	130 ± 10	130 ± 10	130 ± 10
2040	130 ± 10	130 ± 10	130 ± 10	129 ± 10
2050	129 ± 10	129 ± 10	129 ± 10	129 ± 10
2060	129 ± 10	129 ± 10	129 ± 10	128 ± 10
2070	129 ± 11	128 ± 11	128 ± 10	128 ± 11
2080	128 ± 11	128 ± 11	128 ± 11	127 ± 11
2090	128 ± 11	128 ± 11	127 ± 11	127 ± 11
2100	128 ± 11	127 ± 11	127 ± 11	126 ± 11

RCPn.n^a lifetimes based on projections from Fleming et al. (2011) and Prather et al. (2012). All uncertainties are 68% confidence intervals.

AII.6: Effective Radiative Forcing

Table AII.6.1 | ERF from CO₂ (W m⁻²)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a
2000	1.51	1.51	1.51	1.51	1.50	1.50	1.50
2010	1.80	1.80	1.80	1.80	1.78	1.77	1.78
2020	2.11	2.09	2.07	2.15	2.16	2.09	2.13
2030	2.34	2.40	2.32	2.56	2.55	2.38	2.48
2040	2.46	2.70	2.58	3.03	2.99	2.69	2.83
2050	2.49	2.99	2.90	3.56	3.42	2.98	3.18
2060	2.48	3.23	3.25	4.15	3.88	3.20	3.53
2070	2.43	3.39	3.65	4.76	4.36	3.37	3.89
2080	2.35	3.46	4.06	5.37	4.86	3.49	4.25
2090	2.28	3.49	4.42	5.95	5.39	3.57	4.64
2100	2.22	3.54	4.70	6.49	5.95	3.59	5.04

Notes:

RCPn.n ERF based on RCP published projections (Tables All.4.1 to All.4.3) and TAR formula for RF. See Chapter 8, Figure 8.18, Section 11.3.5, 11.3.6.1, Figure 12.3. SRES A2 and B1 and IS92a calculated from abundances in Tables All.4.1 to All.4.3.

Table AII.6.2 | ERF from CH_4 (W m^{-2})

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a
2000	0.47	0.47	0.47	0.47	0.48	0.48	0.48
2010	0.48	0.48	0.48	0.48	0.51	0.50	0.51
2020	0.47	0.49	0.49	0.54	0.56	0.53	0.56
2030	0.42	0.50	0.49	0.61	0.62	0.54	0.61
2040	0.39	0.51	0.51	0.70	0.68	0.54	0.67
2050	0.36	0.50	0.53	0.80	0.75	0.52	0.73
2060	0.32	0.49	0.54	0.90	0.81	0.51	0.78
2070	0.30	0.47	0.55	0.97	0.88	0.49	0.82
2080	0.29	0.44	0.54	1.01	0.95	0.47	0.85
2090	0.28	0.42	0.50	1.05	1.01	0.44	0.88
2100	0.27	0.41	0.44	1.08	1.07	0.41	0.92

Notes:

See notes Table AII.6.1.

Table AII.6.3 | ERF from N_2O (W m^{-2})

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	IS92a
2000	0.15	0.15	0.15	0.15	0.15	0.15	0.15
2010	0.17	0.17	0.17	0.17	0.17	0.17	0.17
2020	0.19	0.19	0.19	0.19	0.20	0.20	0.20
2030	0.20	0.21	0.21	0.23	0.24	0.22	0.23
2040	0.22	0.23	0.24	0.26	0.28	0.25	0.26
2050	0.23	0.25	0.26	0.30	0.32	0.27	0.29
2060	0.23	0.27	0.29	0.34	0.36	0.29	0.32
2070	0.23	0.28	0.33	0.38	0.40	0.30	0.34
2080	0.23	0.30	0.36	0.42	0.44	0.31	0.37
2090	0.23	0.31	0.39	0.46	0.49	0.32	0.39
2100	0.23	0.32	0.41	0.49	0.53	0.32	0.41

See notes Table AII.6.1.

Table AII.6.4 | ERF from all HFCs (W m^{-2})

Year	Historical	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2011*	0.019				
2010		0.019	0.019	0.019	0.020
2020		0.038	0.034	0.030	0.044
2030		0.056	0.046	0.036	0.069
2040		0.071	0.055	0.040	0.091
2050		0.083	0.061	0.042	0.110
2060		0.092	0.064	0.044	0.128
2070		0.104	0.066	0.046	0.144
2080		0.116	0.069	0.047	0.159
2090		0.124	0.074	0.047	0.171
2100		0.126	0.080	0.046	0.182

Notes:

See Table 8.3, 8.A.1, Section 11.3.5.1.1. ERF is calculated from RCP published abundances (Meinshausen et al., 2011a; http://www.iiasa.ac.at/web-apps/tnt/RcpDb) and AR5 radiative efficiencies (Chapter 8).

Table AII.6.5 | ERF from all PFCs and SF₆ (W m⁻²)

Year	Historical	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2011*	0.009				
2010		0.009	0.009	0.010	0.009
2020		0.012	0.011	0.013	0.012
2030		0.014	0.013	0.017	0.015
2040		0.015	0.014	0.021	0.019
2050		0.015	0.016	0.025	0.022
2060		0.016	0.017	0.029	0.026
2070		0.016	0.019	0.033	0.031
2080		0.016	0.021	0.038	0.035
2090		0.016	0.023	0.042	0.039
2100		0.016	0.026	0.045	0.044

Notes:

See notes Table AII.6.4.

Table AII.6.6 | ERF from Montreal Protocol greenhouse gases (W m⁻²)

Year	Historical	WMO A1
2011*	0.328	
2020		0.33 ± 0.01
2030		0.29 ± 0.01
2040		0.24 ± 0.01
2050		0.20 ± 0.01
2060		0.17 ± 0.02
2070		0.15 ± 0.02
2080		0.13 ± 0.02
2090		0.11 ± 0.02
2100		0.10 ± 0.02

See Table 8.3, 8.A.1. ERF is calculated from AR5 radiative efficiency and projected abundances in Scenario A1 of WMO/UNEP assessment (WMO 2010). The 68% confidence interval shown is approximated by combining uncertainty in the radiative efficiency of each gas (±6.1%) and the decay of each gas since 2010 from Table All.4.16 (±15%). All sources of uncertainty are assumed to be independent (see Chapters 2 and 8).

Table AII.6.7a | ERF from stratospheric O₃ changes since 1850 (W m⁻²)

Year	AR5	CCMVal-2
1960		0.0
1980		-0.033
2000		-0.079
2011*	-0.05	
2050		-0.055
2100		-0.075

Notes:

AR5 results are from Chapter 8, see also Sections 11.3.5.1.2, 11.3.6.1. CCMVal-2 results (Cionni et al. 2011) are the multi-model average (13 chemistry–climate models) running a single scenario for stratospheric change: REF-B2 scenario of CCMVal-2 with SRES A1B climate scenario.

Table AII.6.7b | ERF from tropospheric O₃ changes since 1850 (W m⁻²)

Year	AR5	RCP2.6	RCP4.5	RCP6.0	RCP8.5
1980		0.31 ± 0.05	0.31 ± 0.05	0.31 ± 0.05	0.31 ± 0.05
2000		0.36	0.36	0.36	0.36
2011*	0.40				
2030		0.32	0.38	0.36	0.44
2100		0.17	0.27	0.27	0.60 ± 0.11

Notes:

AR5 results from Chapter 8; see also Sections 11.3.5.1.2, 11.3.6.1. Model mean results from ACCMIP (Stevenson et al., 2013) using a consistent model set (FGKN), which is similar to the all-model mean. Standard deviation across models shown for 1980s decade is similar for all scenarios except for RCP8.5 at 2100, which is twice as large.

Table AII.6.8: Total anthropogenic ERF from published RCPs and SRES (W m⁻²)

Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	A1B	B1	IS92a	AR5 Historical
1850	0.12	0.12	0.12	0.12					0.06
1990	1.23	1.23	1.23	1.23	1.03	1.03	1.03	1.03	1.60
2000	1.45	1.45	1.45	1.45	1.33	1.33	1.33	1.31	1.87
2010	1.81	1.81	1.78	1.84	1.74	1.65	1.73	1.63	2.25
2020	2.25	2.25	2.15	2.32	2.04	2.16	2.15	2.00	
2030	2.52	2.67	2.52	2.91	2.56	2.84	2.56	2.40	
2040	2.65	3.07	2.82	3.61	3.22	3.61	2.93	2.82	
2050	2.64	3.42	3.20	4.37	3.89	4.16	3.30	3.25	
2060	2.55	3.67	3.58	5.13	4.71	4.79	3.65	3.76	
2070	2.47	3.84	4.11	5.89	5.56	5.28	3.92	4.24	
2080	2.41	3.90	4.60	6.60	6.40	5.62	4.09	4.74	
2090	2.35	3.91	4.93	7.32	7.22	5.86	4.18	5.26	
2100	2.30	3.94	5.15	7.97	8.07	6.05	4.19	5.79	

Notes:

Derived from RCP published CO₂-eq concentrations that aggregate all anthropogenic forcings including greenhouse gases plus aerosols. These results may not be directly comparable to ERF values used in AR5 because of how aerosol indirect effects are included, but results are similar to those derived using ERF in Chapter 12 (see Figure 12.4). Comparisons with the TAR Appendix II (SRES A2 and B1) may not be equivalent because those total RF values (TAR II.3.11) were made using the TAR Chapter 9 Simple Model, not always consistent with the individual components in that appendix (TAR II.3.1 to 9). See Chapter 1, Sections 11.3.6.1, 12.3.1.3 and 12.3.1.4, Figures 1.15 and 12.3. For AR5 Historical, see Table All.1.2 and Chapter 8.

Table AII.6.9: ERF components relative to 1850 (W m⁻²) derived from ACCMIP

Year		WMGHG	Ozone	Aerosol	ERF Net
1930		0.58 ± 0.04	0.09 ± 0.03	-0.24 ± 0.06	0.44 ± 0.07
1980		1.56 ± 0.10	0.30 ± 0.10	-0.90 ± 0.22	1.00 ± 0.26
2000		2.30 ± 0.14	0.33 ± 0.11	−1.17 ± 0.28	1.51 ± 0.33
2030	RCP8.5	3.64 ± 0.22	0.43 ± 0.12	−0.91 ± 0.22	3.20 ± 0.33
2100	RCP2.6	2.83 ± 0.17	0.14 ± 0.07	-0.12 ± 0.06*	2.86 ± 0.19
2100	RCP4.5	4.33 ± 0.26	0.23 ± 0.09	-0.12 ± 0.06*	4.44 ± 0.28
2100	RCP6.0	5.60 ± 0.34	0.25 ± 0.05	-0.12 ± 0.06*	5.74 ± 0.35
2100	RCP8.5	8.27 ± 0.50	0.55 ± 0.18	-0.12 ± 0.03	8.71 ± 0.53

Radiative forcing and adjusted forcing from the ACCMIP results (Shindell et al., 2013) are given for all well-mixed greenhouse gases (WMGHG), ozone, aerosols, and the net. Original 90% confidence intervals have been reduced to 68% confidence to compare with the CMIP5 model standard deviations in Table All.6.10. Some uncertainty ranges (*) are estimated from the 2100 RCP8.5 results (see Chapter 12). See Sections 11.3.5.1.3 and 11.3.6.1, Figure 12.4.

Table AII.6.10 | Total anthropogenic plus natural ERF (W m⁻²) from CMIP5 and CMIP3, including historical

Year	SRES A1B	RCP2.6 ^{&}	RCP4.5 ^{&}	RCP6.0 ^{&}	RCP8.5 ^{&}				
1850s ^H	-0.19 ± 0.19		-0.12	± 0.07					
1986–2005 ^H	1.51 ± 0.44		1.34 ± 0.50						
1986–2005	1.51 ± 0.44	1.31 ± 0.47	1.30 ± 0.48	1.29 ± 0.51	1.30 ± 0.47				
2010 ^d	2.18 ± 0.53	1.97 ± 0.50	1.91 ± 0.53	1.90 ± 0.54	1.96 ± 0.53				
2020 ^d	2.58 ± 0.57	2.33 ± 0.47	2.27 ± 0.51	2.16 ± 0.55	2.43 ± 0.52				
2030 ^d	3.15 ± 0.60	2.50 ± 0.51	2.61 ± 0.54	2.41 ± 0.60	2.92 ± 0.57				
2040 ^d	3.77 ± 0.72	2.64 ± 0.47	2.98 ± 0.55	2.72 ± 0.58	3.52 ± 0.60				
2050 ^d	4.32 ± 0.73	2.65 ± 0.47	3.25 ± 0.56	3.07 ± 0.61	4.21 ± 0.63				
2060 ^d	4.86 ± 0.74	2.57 ± 0.50	3.50 ± 0.59	3.40 ± 0.60	4.97 ± 0.68				
2070 ^d	5.32 ± 0.79	2.51 ± 0.50	3.65 ± 0.58	3.90 ± 0.65	5.70 ± 0.76				
2080 ^d	5.71 ± 0.81	2.40 ± 0.46	3.71 ± 0.55	4.27 ± 0.69	6.31 ± 0.81				
2090 ^d	6.00 ± 0.83	2.44 ± 0.49	3.78 ± 0.58	4.64 ± 0.71	7.13 ± 0.89				
2081–2100	5.99 ± 0.78	2.40 ± 0.46	3.73 ± 0.56	4.56 ± 0.70	7.02 ± 0.92				

Notes:

CMIP5 historical and RCP results (Forster et al., 2013) are shown with CMIP3 SRES A1B results (Forster and Taylor, 2006). The alternative results for 1986–2005 with CMIP5 are derived from: all models contributing historical experiments (1986–2005), and the subsets of models contributing to each RCP experiment (next line, 1986–2005). For SRES A1B the same set of models is used from 1850 to 2100. Values are 10-year averages (2090) = 2086–2095) and show multi-model means and standard deviations. See Chapter 12, Section 12.3 and discussion of Figure 12.4, also Sections 8.1, 9.3.2.2, 11.3.6.1 and 11.3.6.3. Due to lack of reporting, for RCP8.5 the 2081–2100 result contains one fewer model than the 2090d decade, and for A1B the 1850s result has just 5 models and the 2081–2100 result has 3 fewer models than the 2090d decade.

AII.7: Environmental Data

Table All.7.1 | Global mean surface O₃ change (ppb)

		нт	ΆΡ		SR	ES		
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1	CLE	MFR
2000	27.2 ± 2.9	27.2 ± 2.9	27.2 ± 2.9	27.2 ± 2.9	27.2 ± 2.9	27.2 ± 2.9	28.7	28.7
2010	0.1	0.1	0.0	0.1	1.2	0.6		
2020	-0.3	-0.2	-0.2	0.6	2.8	1.1		
2030	-1.1	-0.1	-0.3	1.0	4.4	1.3	0.7 ± 1.4	−2.3 ± 1.1
2040	-1.5	-0.3	-0.3	1.2	5.3	1.3		
2050	-1.9	-0.8	-0.4	1.5	6.2	0.8		
2060	-2.4	-1.3	-0.5	1.8	7.1	0.2		
2070	-3.0	-1.9	-1.0	1.9	8.0	-0.5		
2080	-3.5	-2.5	-1.5	1.9	9.2	-1.1		
2090	-3.8	-2.8	-2.1	1.9	10.6	-1.7		
2100	-4.2	-3.0	-2.8	1.9	11.9	-2.5		

		CM	IP5		ACCMIP				
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5	
2000	30.0 ± 4.2	30.0 ± 4.2	30.0 ± 4.2	30.0 ± 4.2	28.1 ± 3.1	28.1 ± 3.2	28.1± 3.1	28.1 ± 3.1	
2010	-0.4	-0.2	-0.6	-0.1					
2020	-0.9	-0.3	-0.9	0.7					
2030	-1.8	-0.2	-1.1	1.5	-1.4	0.3	-0.6	1.7	
2040	-2.3	-0.3	-1.2	2.0					
2050	-2.9	-0.9	-1.5	2.5					
2060	-4.0	-1.7	-1.9	2.9					
2070	-5.4	-2.8	-2.8	3.1					
2080	-6.4	-3.7	-3.9	3.0					
2090	-6.9	-4.1	-4.8	2.8					
2100	-7.2	-4.3	-5.6	2.7	-6.3	-3.5	-4.9	3.4	

Notes:

HTAP results are from Wild et al. (2012) and use the published O₃ sensitivities to regional emissions from the HTAP multi-model study (HTAP 2010) and scale those O₃ changes to the RCP emission scenarios. The ±1 standard deviation (68% confidence interval) over the range of 14 parametric models is shown for year 2000 and is similar for all years. Results from the SRES A2 and B1 scenarios are from the TAR 0xComp studies diagnosed by Wild (Prather et al., 2001; 2003). CLE and MFR results (Dentener et al., 2005; 2006) include uncertainty (standard deviation of model results) in the change since year 2000, and CLE alone includes climate effects. The CMIP5 and ACCMIP results are from V. Naik and A. Fiore based on Fiore et al. (2012) and include the standard deviation over the models in year 2000, which is similar for following years. This does not necessarily reflect the uncertainty in the projected change, which may be smaller, see Fiore et al. (2012). The difference in year 2000 between CMIP5 (4 models) and ACCMIP (12 models) reflect different model biases. Even though ACCMIP only has three decades (2000, 2030, 2100), the greater number of models (5 to 11 depending on time slice and scenario) makes this a more robust estimate. See Chapter 11, ES, Section 11.3.5.2.2.

Table AII.7.2 | Surface O₃ change (ppb) for HTAP regions

			North Ameri	ca		
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000	36.1 ± 3.2	36.1 ± 3.2	36.1 ± 3.2	36.1 ± 3.2	36.1 ± 3.2	36.1 ± 3.2
2010	-0.8	-1.1	-0.1	-1.5	1.5	0.4
2020	-1.9	-2.3	-0.9	-1.4	3.6	0.5
2030	-3.7	-2.7	-1.5	-1.1	5.3	-0.1
2040	-4.6	-3.2	-1.9	-1.1	6.2	-0.8
2050	-5.6	-3.9	-2.4	-0.9	6.9	-1.9
2060	-6.5	-4.6	-3.0	-0.7	7.9	-2.9
2070	-7.5	-5.3	-4.0	-0.7	8.8	-3.8
2080	-8.2	-6.1	-4.9	-0.7	10.3	-4.5
2090	-8.5	-6.4	-5.7	-0.8	12.2	-5.2
2100	-8.9	-6.6	-6.7	-0.9	13.9	-6.1

			Europe			
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000	37.8 ± 3.7	37.8 ± 3.7	37.8 ± 3.7	37.8 ± 3.7	37.8 ± 3.7	37.8 ± 3.7
2010	-0.5	-0.3	-0.1	-0.7	1.5	0.3
2020	-1.4	-1.3	-0.7	-0.2	3.7	0.6
2030	-3.0	-1.4	-1.1	0.1	5.7	0.2
2040	-3.8	-1.9	-1.5	0.1	6.7	-0.3
2050	-4.6	-2.7	-2.0	0.3	7.7	-1.2
2060	-5.6	-3.5	-2.6	0.4	8.8	-2.1
2070	-6.6	-4.3	-3.3	0.4	9.8	-3.0
2080	-7.5	-5.1	-4.2	0.2	11.3	-3.8
2090	-8.0	-5.6	-5.2	-0.1	13.4	-4.6
2100	-8.5	-6.0	-6.4	-0.2	15.1	-5.6

			South Asia	1		
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000	39.6 ± 3.4	39.6 ± 3.4	39.6 ± 3.4	39.6 ± 3.4	39.6 ± 3.4	39.6 ± 3.4
2010	1.5	1.4	0.3	1.4	2.7	1.8
2020	1.6	2.2	0.0	3.9	6.1	3.3
2030	0.5	3.4	-0.6	5.0	8.9	3.9
2040	0.3	3.5	-0.1	5.5	10.4	4.1
2050	0.2	2.9	0.0	5.2	11.7	2.9
2060	-0.1	1.1	0.4	5.1	12.7	1.5
2070	-1.0	-1.2	-0.2	4.9	13.6	-0.1
2080	-2.6	-3.9	-1.7	4.9	14.5	-1.5
2090	-4.4	-5.0	-3.0	4.1	15.1	-3.0
2100	-6.8	-6.0	-4.7	4.0	15.0	-4.6

Table AII.7.2 | (continued)

			East Asia			
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A2	B1
2000	35.6 ± 2.7	35.6 ± 2.7	35.6 ± 2.7	35.6 ± 2.7	35.6 ± 2.7	35.6 ± 2.7
2010	1.0	0.6	0.5	1.3	2.0	1.1
2020	0.5	0.6	0.4	2.5	4.6	1.9
2030	-1.4	0.2	0.6	2.8	6.8	2.1
2040	-2.7	-0.8	1.4	1.8	8.0	2.0
2050	-3.8	-2.5	1.4	1.4	9.1	0.9
2060	-4.8	-3.6	0.9	1.4	10.2	-0.3
2070	-6.0	-4.6	-0.7	1.2	11.2	-1.4
2080	-6.9	-5.5	-2.2	1.0	12.5	-2.4
2090	-7.4	-5.8	-3.5	0.7	13.9	-3.4
2100	-8.0	-6.0	-4.9	0.5	14.9	-4.6

HTAP results from Wild et al. (2012); see Table AII.7.1.

 $\textbf{Table AII.7.3} \ | \ \ \text{Surface O}_3 \ \text{change (ppb) from CMIP5/ACCMIP for continental regions}$

				Africa				
		CM	IP5			ACC	MIP	
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2000	33.8 ± 4.3	33.8 ± 4.3	33.8 ± 4.3	33.8 ± 4.3	33.1 ± 4.1	33.1 ± 4.1	33.1 ± 4.1	33.1 ± 4.1
2010	-0.7	-0.1	-1.2	-0.2				
2020	-1.0	0.2	-1.5	0.9				
2030	-1.9	0.5	-1.8	1.7	-1.4	0.9	-1.3	2.4
2040	-2.0	0.6	-1.8	2.6				
2050	-2.3	0.2	-2.0	3.2				
2060	-2.6	-0.3	-2.2	3.7				
2070	-3.2	-1.2	-2.8	4.0				
2080	-3.6	-2.3	-3.7	4.1				
2090	-4.1	-3.0	-4.5	4.1				
2100	-4.8	-3.3	-5.2	4.1	-4.9	-2.9	-4.9	5.0

				Australia	a			
		CM	IP5			ACC	MIP	
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2000	23.3 ± 4.6	23.3 ± 4.6	23.3 ± 4.6	23.3 ± 4.6	23.7 ± 3.5	23.7 ± 3.5	23.7 ± 3.5	23.7 ± 3.5
2010	-1.3	-1.1	-0.8	-0.9				
2020	-1.7	-1.4	-1.0	-0.6				
2030	-2.3	-1.3	-1.4	0.0	-1.8	-0.4	-1.4	0.9
2040	-2.6	-1.2	-1.7	0.5				
2050	-3.0	-1.5	-1.9	0.9				
2060	-3.7	-1.9	-2.0	1.5				
2070	-4.4	-2.4	-2.5	1.8				
2080	-5.0	-2.9	-3.1	1.9				
2090	-5.0	-3.1	-3.5	1.9				
2100	-5.2	-3.2	-4.0	2.0	-4.3	-2.5	-4.0	3.1

Table AII.7.3 | (continued)

				Central Eur	asia			
		CM	IP5			ACC	MIP	
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2000	38.7 ± 5.3	38.7 ± 5.3	38.7 ± 5.3	38.7 ± 5.3	32.5 ± 6.2	32.5 ± 6.2	32.5 ± 6.2	32.5 ± 6.2
2010	-0.6	-0.6	-0.6	-0.5				
2020	-1.6	-1.2	-1.2	0.5				
2030	-3.2	-1.3	-1.4	1.4	-1.9	-0.1	-0.3	1.8
2040	-4.5	-1.9	-1.7	1.6				
2050	-5.7	-2.9	-2.2	1.8				
2060	-7.2	-4.2	-3.0	2.8				
2070	-9.1	-5.4	-4.3	3.0				
2080	-10.6	-6.5	-6.0	2.9				
2090	-11.2	-6.8	-7.2	2.6				
2100	-11.5	-7.0	-8.1	2.6	-8.5	-3.8	-5.6	4.3

	Europe								
	CMIP5			ACCMIP					
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5	
2000	40.4 ± 6.0	40.4 ± 6.0	40.4 ± 6.0	40.4 ± 6.0	33.6 ± 5.2	33.6 ± 5.2	33.6 ± 5.2	33.6 ± 5.2	
2010	-0.4	-0.5	-0.5	-0.4					
2020	-1.5	-1.3	-1.2	0.3					
2030	-3.2	-1.7	-1.7	1.1	-1.6	0.6	-0.4	2.3	
2040	-4.6	-2.4	-2.3	1.4					
2050	-6.1	-3.5	-3.0	1.8					
2060	-8.0	-4.9	-4.1	2.4					
2070	-10.4	-6.3	-5.8	2.6					
2080	-12.2	-7.6	-7.6	2.3					
2090	-13.0	-8.0	-9.2	2.1					
2100	-13.4	-8.1	-10.3	2.0	-9.4	-3.5	-7.2	4.9	

	East Asia								
	CMIP5			ACCMIP					
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5	
2000	46.3 ± 4.9	46.3 ± 4.9	46.3 ± 4.9	46.3 ± 4.9	41.0 ± 5.5	41.0 ± 5.5	41.0 ± 5.5	41.0 ± 5.5	
2010	0.8	0.6	0.1	1.1					
2020	-0.1	0.8	-0.1	2.7					
2030	-2.3	0.5	0.4	3.8	-1.8	1.0	0.4	3.2	
2040	-3.9	-0.9	1.1	3.8					
2050	-5.8	-3.3	1.0	3.7					
2060	-8.0	-5.4	0.2	3.9					
2070	-10.2	-7.3	-1.6	3.6					
2080	-12.1	-8.8	-4.0	3.3					
2090	-13.2	-9.4	-6.3	2.9					
2100	-13.9	-9.6	-8.0	2.8	-11.4	-5.9	-6.6	4.6	

Table AII.7.3 | (continued)

	Middle East								
	CMIP5				ACC	MIP			
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5	
2000	45.9 ± 3.1	45.9 ± 3.1	45.9 ± 3.1	45.9 ± 3.1	45.7 ± 5.4	45.7 ± 5.4	45.7 ± 5.4	45.7 ± 5.4	
2010	-0.4	0.5	-0.7	0.5					
2020	-1.5	0.4	-1.4	2.5					
2030	-3.3	0.6	-1.6	3.8	-2.8	0.9	-1.1	4.1	
2040	-3.6	0.2	-2.0	4.4					
2050	-4.6	-0.9	-2.6	4.7					
2060	-6.0	-2.7	-3.5	5.2					
2070	-8.1	-4.9	-4.2	5.1					
2080	-9.9	-7.1	-5.9	5.1					
2090	-11.3	-8.4	-8.2	4.8					
2100	-12.4	-9.0	-9.9	4.6	-11.7	-7.5	-9.8	5.0	

	North America								
	CMIP5				ACCMIP				
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5	
2000	40.7 ± 5.1	40.7 ± 5.1	40.7 ± 5.1	40.7 ± 5.1	34.3 ± 5.5	34.3 ± 5.5	34.3 ± 5.5	34.3 ± 5.5	
2010	-0.9	-1.2	-0.6	-1.0					
2020	-2.1	-2.4	-1.4	-0.5					
2030	-4.3	-2.8	-1.8	0.1	-2.5	-0.7	-0.8	1.3	
2040	-5.7	-3.6	-2.5	0.3					
2050	-7.2	-4.6	-3.1	0.6					
2060	-9.1	-5.8	-4.4	1.0					
2070	-11.4	-7.1	-6.2	1.2					
2080	-13.2	-8.3	-8.1	1.2					
2090	-13.8	-8.5	-9.6	1.0					
2100	-14.1	-8.8	-10.9	0.9	-10.5	-4.7	-8.7	3.4	

	South America								
	CMIP5				ACCMIP				
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5	
2000	25.3 ± 4.2	25.3 ± 4.2	25.3 ± 4.2	25.3 ± 4.2	23.7 ± 3.9	23.7 ± 3.9	23.7 ± 3.9	23.7 ± 3.9	
2010	-1.4	-0.6	-1.2	-0.3					
2020	-2.1	-1.2	-1.8	0.3					
2030	-2.9	-1.2	-2.1	0.6	-2.3	-0.6	-1.8	1.2	
2040	-2.9	-1.3	-2.3	1.1					
2050	-3.2	-1.7	-2.6	1.3					
2060	-3.6	-2.5	-2.9	1.5					
2070	-4.3	-3.6	-3.5	1.5					
2080	-5.1	-4.5	-4.2	1.1					
2090	-5.5	-5.0	-4.7	0.7					
2100	-5.7	-5.2	-5.3	0.4	-5.0	-4.0	-5.2	2.0	

Table AII.7.3 | (continued)

	South Asia								
	CMIP5					ACC	MIP		
Year	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5	
2000	34.4 ± 3.9	34.4 ± 3.9	34.4 ± 3.9	34.4 ± 3.9	33.7 ± 4.6	33.7 ± 4.6	33.7 ± 4.6	33.7 ± 4.6	
2010	1.3	0.9	-0.1	1.3					
2020	1.4	1.6	-0.2	3.1					
2030	0.7	2.7	-0.1	3.9	0.6	2.3	-0.4	4.6	
2040	0.6	2.8	0.3	4.0					
2050	0.4	1.6	0.4	3.6					
2060	-0.5	-0.7	0.3	3.2					
2070	-2.0	-3.2	-0.5	2.9					
2080	-3.9	-5.7	-2.0	2.7					
2090	-5.7	-6.7	-3.3	2.2					
2100	-7.1	-7.3	-4.5	1.9	-7.2	-6.1	-4.5	3.6	

Notes

See notes for Table All.7.1. For definition of regions, see Figure 11.23 and Fiore et al. (2012).

Table AII.7.4 | Surface particulate matter change (log₁₀[PM_{2.5} (microgram/m³)]) from CMIP5/ACCMIP for continental regions

	Africa							
Year	RCP2.6 RCP4.5 RCP6.0 RCP8.5							
2000	1.17 ± 0.23							
2030	0.00	0.04	-0.01	0.01				
2050	-0.02		-0.02	0.01				
2100	0.00	-0.01	-0.03	-0.02				

	Australia							
Year	RCP2.6 RCP4.5 RCP6.0 R							
2000	0.65 ± 0.32							
2030	-0.04	0.03	-0.01	0.01				
2050	-0.06		-0.02	-0.04				
2100	0.00	0.00	-0.03	-0.01				

	Central Eurasia							
Year	RCP2.6 RCP4.5 RCP6.0 RCP8.5							
2000	0.59 ± 0.17							
2030	-0.07	-0.01	-0.05	-0.06				
2050	-0.12		-0.08	-0.09				
2100	-0.13	-0.11	-0.11	-0.12				

	Europe							
Year	RCP2.6 RCP4.5 RCP6.0 RCP8.5							
2000	0.81 ± 0.09							
2030	-0.20	-0.10	-0.13	-0.24				
2050	-0.31		-0.25	-0.33				
2100	-0.32	-0.28	-0.37	-0.38				

Table AII.7.4 | (continued)

	East Asia								
Year	RCP2.6 RCP4.5 RCP6.0 RCP8.5								
2000	1.04 ± 0.16								
2030	-0.04	-0.02	0.01	0.01					
2050	-0.24		0.07	-0.17					
2100	-0.31	-0.33	-0.21	-0.30					

	Middle East							
Year	RCP2.6 RCP4.5 RCP6.0 RCP8.5							
2000	1.10 ± 0.27							
2030	-0.06	-0.02	-0.05	-0.03				
2050	-0.08		-0.06	-0.03				
2100	-0.11	-0.11	-0.10	-0.12				

North America							
Year	RCP2.6 RCP4.5 RCP6.0 RCP8.5						
2000	0.51 ± 0.15						
2030	-0.16	-0.10	-0.10	-0.15			
2050	-0.20		-0.16	-0.17			
2100	-0.20	-0.19	-0.24	-0.21			

South America							
Year	RCP2.6 RCP4.5 RCP6.0 RCP8.5						
2000	0.71 ± 0.11						
2030	-0.05	-0.04	-0.04	-0.03			
2050	-0.10		-0.05	-0.07			
2100	-0.11	-0.11	-0.09	-0.12			

South Asia							
Year	RCP2.6 RCP4.5 RCP6.0 RCP8.5						
2000	1.02 ± 0.11						
2030	0.04	0.02	0.03	0.05			
2050	-0.05		0.07	0.00			
2100	-0.16	-0.24	-0.06	-0.11			

Notes:

Decadal average of the $log_{10}[PM_{2.5}]$ values are given only where results include at least four models from either ACCMIP or CMIP5. Results are from A. Fiore and V. Naik based on Fiore et al. (2012) using the CMIP5/ACCMIP archive. Due to the very large systematic spread across models, the statistics were calculated for the log values, but Figure 11.23 shows statistics for direct $PM_{2.5}$ values. Owing to the large spatial variations no global average is given. Model mean and standard deviation are shown for year 2000; differences in $log_{10}[PM_{2.5}]$ are shown for 2030, 2050 and 2100. See notes for Table All.7.3 and Figure 11.23 for regions; see also Chapter 11, ES.

Table AII.7.5 | CMIP5 (RCP) and CMIP3 (SRES A1B) global mean surface temperature change (°C) relative to 1986–2005 reference period. Results here are a statistical summary of the spread in the CMIP ensembles for each of the scenarios. They do not account for model biases and model dependencies, and the percentiles do not correspond to the assessed uncertainty in Chapters 11 (11.3.6.3) and 12 (12.4.1). The statistical spread across models cannot be interpreted as uncertainty ranges or in terms of calibrated language (Section 12.2).

	RCP2.6					RCP4.5				
Years	5%	17%	50%	83%	95%	5%	17%	50%	83%	95%
1850–1990			-0.61					-0.61		
1986–2005			0.00					0.00		
2010d	0.19	0.33	0.36	0.52	0.62	0.22	0.26	0.36	0.48	0.59
2020 ^d	0.36	0.45	0.55	0.81	1.07	0.39	0.48	0.59	0.74	0.83
2030 ^d	0.47	0.56	0.74	1.02	1.24	0.56	0.69	0.82	1.10	1.22
2040 ^d	0.51	0.68	0.88	1.25	1.50	0.64	0.86	1.04	1.35	1.57
2050 ^d	0.49	0.71	0.94	1.37	1.65	0.84	1.05	1.24	1.63	1.97
2060 ^d	0.36	0.69	0.93	1.48	1.71	0.90	1.13	1.44	1.90	2.19
2070 ^d	0.20	0.70	0.89	1.49	1.71	0.98	1.20	1.54	2.07	2.32
2080 ^d	0.15	0.62	0.94	1.44	1.79	0.98	1.27	1.62	2.25	2.54
2090 ^d	0.18	0.58	0.94	1.53	1.79	1.06	1.33	1.68	2.29	2.59

			RCP6.0			RCP8.5				
Years	5%	17%	50%	83%	95%	5%	17%	50%	83%	95%
1850–1990			-0.61					-0.61		
1986–2005			0.00					0.00		
2010 ^d	0.21	0.26	0.36	0.47	0.64	0.23	0.29	0.37	0.47	0.62
2020 ^d	0.33	0.40	0.55	0.70	0.90	0.37	0.51	0.66	0.84	0.99
2030 ^d	0.40	0.59	0.74	0.92	1.17	0.65	0.77	0.94	1.29	1.39
2040 ^d	0.59	0.73	0.95	1.21	1.41	0.93	1.13	1.29	1.68	1.77
2050 ^d	0.69	0.92	1.15	1.52	1.81	1.20	1.48	1.70	2.19	2.37
2060 ^d	0.88	1.08	1.32	1.78	2.18	1.55	1.88	2.16	2.74	2.99
2070 ^d	1.08	1.28	1.58	2.14	2.52	1.96	2.25	2.60	3.31	3.61
2080 ^d	1.33	1.56	1.81	2.58	2.88	2.31	2.65	3.05	3.93	4.22
2090 ^d	1.51	1.72	2.03	2.92	3.24	2.63	2.96	3.57	4.45	4.81

	SRES A1B								
Years	5%	17%	50%	83%	95%				
1850–1990			-0.61						
1986–2005			0.00						
2010 ^d	0.15	0.22	0.34	0.44	0.62				
2020 ^d	0.27	0.37	0.52	0.76	0.91				
2030 ^d	0.47	0.59	0.82	1.04	1.38				
2040 ^d	0.65	0.90	1.11	1.36	1.79				
2050 ^d	0.92	1.14	1.55	1.65	2.14				
2060 ^d	1.12	1.40	1.75	1.98	2.67				
2070 ^d	1.40	1.60	2.14	2.39	3.12				
2080 ^d	1.61	1.80	2.30	2.75	3.47				
2090 ^d	1.76	1.96	2.54	3.05	3.84				

This spread in the model ensembles (as shown in Figures 11.26a and 12.5, and discussed in Section 11.3.6) is not a measure of uncertainty. For the AR5 assessment of global mean surface temperature changes and uncertainties see: Section 11.3.6.3 and Figure 11.25 for the near-term (2016–2035) temperatures; and Section 12.4.1 and Tables 12.2–3 for the long term (2081–2100). See discussion about uncertainty and ensembles in Section 12.2, which explains how model spread is not equivalent to uncertainty. Results here are shown for the CMIP5 archive (Annex I, frozen as of March 15, 2013) for the RCPs and the similarly current CMIP3 archive for SRES A1B, which is not the same set of models used in AR4 (Figure SPM.5). Ten-year averages are shown (2030d = 2026–2035). Temperature changes are relative to the reference period (1986–2005, defined as zero in this table), using CMIP5 for all four RCPs (G. J. van Oldenborgh, http://climexp.knmin/l²; see Annex I for listing of models included) and CMIP3 for SRES A1B (22 models). The warming from early instrumental record (1850–1900) to the modern reference period (1986–2005) is derived from HadCRUT4 observations as 0.61°C (C. Morice; see Chapter 2 and Table All.1.3).

Table AII.7.6 | Global mean surface temperature change (°C) relative to 1990 from the TAR

Years	A1B	A1T	A1FI	A2	B1	B2	IS92a	A1B
PI*	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33
1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2000	0.16	0.16	0.16	0.16	0.16	0.16	0.15	0.16
2010	0.30	0.40	0.32	0.35	0.34	0.39	0.27	0.30
2020	0.52	0.71	0.55	0.50	0.55	0.66	0.43	0.52
2030	0.85	1.03	0.85	0.73	0.77	0.93	0.61	0.85
2040	1.26	1.41	1.27	1.06	0.98	1.18	0.80	1.26
2050	1.59	1.75	1.86	1.42	1.21	1.44	1.00	1.59
2060	1.97	2.04	2.50	1.85	1.44	1.69	1.26	1.97
2070	2.30	2.25	3.10	2.33	1.63	1.94	1.52	2.30
2080	2.56	2.41	3.64	2.81	1.79	2.20	1.79	2.56
2090	2.77	2.49	4.09	3.29	1.91	2.44	2.08	2.77
2100	2.95	2.54	4.49	3.79	1.98	2.69	2.38	2.95

Single-year estimates of mean surface air temperature warming relative to the reference period 1990 for the SRES scenarios evaluated in the TAR. The pre-industrial estimates are for 1750, and all results are based on a simple climate model. See TAR Appendix II.

 Table All.7.7 | Global mean sea level rise (m) with respect to 1986–2005 at 1 January on the years indicated. Values shown as median and likely range; see Section 13.5.1.

Year	SRES A1B	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2007	0.03 [0.02 to 0.04]				
2010	0.04 [0.03 to 0.05]				
2020	0.08 [0.06 to 0.10]	0.08 [0.06 to 0.11]			
2030	0.12 [0.09 to 0.16]	0.13 [0.09 to 0.16]	0.13 [0.09 to 0.16]	0.12 [0.09 to 0.16]	0.13 [0.10 to 0.17]
2040	0.17 [0.13 to 0.22]	0.17 [0.13 to 0.22]	0.17 [0.13 to 0.22]	0.17 [0.12 to 0.21]	0.19 [0.14 to 0.24]
2050	0.23 [0.17 to 0.30]	0.22 [0.16 to 0.28]	0.23 [0.17 to 0.29]	0.22 [0.16 to 0.28]	0.25 [0.19 to 0.32]
2060	0.30 [0.21 to 0.38]	0.26 [0.18 to 0.35]	0.28 [0.21 to 0.37]	0.27 [0.19 to 0.35]	0.33 [0.24 to 0.42]
2070	0.37 [0.26 to 0.48]	0.31 [0.21 to 0.41]	0.35 [0.25 to 0.45]	0.33 [0.24 to 0.43]	0.42 [0.31 to 0.54]
2080	0.44 [0.31 to 0.58]	0.35 [0.24 to 0.48]	0.41 [0.28 to 0.54]	0.40 [0.28 to 0.53]	0.51 [0.37 to 0.67]
2090	0.52 [0.36 to 0.69]	0.40 [0.26 to 0.54]	0.47 [0.32 to 0.62]	0.47 [0.33 to 0.63]	0.62 [0.45 to 0.81]
2100	0.60 [0.42 to 0.80]	0.44 [0.28 to 0.61]	0.53 [0.36 to 0.71]	0.55 [0.38 to 0.73]	0.74 [0.53 to 0.98]

Annex III: Glossary

Editor:

Serge Planton (France)

This annex should be cited as:

IPCC, 2013: Annex III: Glossary [Planton, S. (ed.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Annex III Glossary

This glossary defines some specific terms as the Lead Authors intend them to be interpreted in the context of this report. Red, italicized words indicate that the term is defined in the Glossary.

Abrupt climate change A large-scale change in the *climate system* that takes place over a few decades or less, persists (or is anticipated to persist) for at least a few decades and causes substantial disruptions in human and natural systems.

Active layer The layer of ground that is subject to annual thawing and freezing in areas underlain by *permafrost*.

Adjustment time See *Lifetime*. See also *Response time*.

Advection Transport of water or air along with its properties (e.g., temperature, chemical tracers) by winds or currents. Regarding the general distinction between advection and *convection*, the former describes transport by large-scale motions of the *atmosphere* or ocean, while convection describes the predominantly vertical, locally induced motions.

Aerosol A suspension of airborne solid or liquid particles, with a typical size between a few nanometres and 10 µm that reside in the *atmosphere* for at least several hours. For convenience the term *aerosol*, which includes both the particles and the suspending gas, is often used in this report in its plural form to mean *aerosol particles*. Aerosols may be of either natural or *anthropogenic* origin. Aerosols may influence *climate* in several ways: directly through scattering and absorbing radiation (see *Aerosol–radiation interaction*) and indirectly by acting as *cloud condensation nuclei* or *ice nuclei*, modifying the optical properties and *lifetime* of clouds (see *Aerosol–cloud interaction*).

Aerosol–cloud interaction A process by which a perturbation to *aerosol* affects the microphysical properties and evolution of clouds through the aerosol role as *cloud condensation nuclei* or ice nuclei, particularly in ways that affect radiation or precipitation; such processes can also include the effect of clouds and precipitation on aerosol. The aerosol perturbation can be *anthropogenic* or come from some natural *source*. The *radiative forcing* from such interactions has traditionally been attributed to numerous *indirect aerosol effects*, but in this report, only two levels of radiative forcing (or effect) are distinguished:

Radiative forcing (or effect) due to aerosol–cloud interactions (RFaci) The radiative forcing (or radiative effect, if the perturbation is internally generated) due to the change in number or size distribution of cloud droplets or ice crystals that is the proximate result of an aerosol perturbation, with other variables (in particular total cloud water content) remaining equal. In liquid clouds, an increase in cloud droplet concentration and surface area would increase the cloud albedo. This effect is also known as the cloud albedo effect, first indirect effect, or Twomey effect. It is a largely theoretical concept that cannot readily be isolated in observations or comprehensive process models due to the rapidity and ubiquity of rapid adjustments.

Effective radiative forcing (or effect) due to aerosol–cloud interactions (ERFaci) The final radiative forcing (or effect) from the aerosol perturbation including the rapid adjustments to the initial change in droplet or crystal formation rate. These adjustments include changes in the strength of *convection*, precipitation efficiency, cloud fraction, *lifetime* or water content of clouds, and the formation or suppression of clouds in remote areas due to altered circulations.

The total effective radiative forcing due to both aerosol–cloud and aerosol–radiation interactions is denoted *aerosol effective radiative forcing (ERFari+aci)*. See also *Aerosol–radiation interaction*.

Aerosol–radiation interaction An interaction of *aerosol* directly with radiation produce *radiative effects*. In this report two levels of radiative forcing (or effect) are distinguished:

Radiative forcing (or effect) due to aerosol–radiation interactions (RFari) The *radiative forcing* (or radiative effect, if the perturbation is internally generated) of an aerosol perturbation due directly to aerosol–radiation interactions, with all environmental variables remaining unaffected. Traditionally known in the literature as the *direct aerosol forcing* (or effect).

Effective radiative forcing (or effect) due to aerosol-radiation interactions (ERFari) The final radiative forcing (or effect) from the aerosol perturbation including the *rapid adjustments* to the initial change in radiation. These adjustments include changes in cloud caused by the impact of the radiative heating on convective or larger-scale atmospheric circulations, traditionally known as *semi-direct aerosol forcing (or effect)*.

The total effective radiative forcing due to both aerosol–cloud and aerosol–radiation interactions is denoted *aerosol effective radiative forcing (ERFari+aci)*. See also *Aerosol–cloud interaction*.

Afforestation Planting of new *forests* on lands that historically have not contained forests. For a discussion of the term *forest* and related terms such as *afforestation*, *reforestation* and *deforestation*, see the IPCC Special Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

Airborne fraction The fraction of total CO_2 emissions (from fossil fuel and land use change) remaining in the *atmosphere*.

Air mass A widespread body of air, the approximately homogeneous properties of which (1) have been established while that air was situated over a particular *region* of the Earth's surface, and (2) undergo specific modifications while in transit away from the source region (AMS, 2000).

Albedo The fraction of *solar radiation* reflected by a surface or object, often expressed as a percentage. Snow-covered surfaces have a high albedo, the albedo of soils ranges from high to low, and vegetation-covered surfaces and oceans have a low albedo. The Earth's planetary albedo varies mainly through varying cloudiness, snow, ice, leaf area and and cover changes.

Alkalinity A measure of the capacity of an aqueous solution to neutralize acids.

Altimetry A technique for measuring the height of the Earth's surface with respect to the geocentre of the Earth within a defined terrestrial reference frame (geocentric sea level).

Annular modes See *Northern Annular Mode (NAM)* and *Southern Annular Mode (SAM)*.

Anthropogenic Resulting from or produced by human activities.

Atlantic Multi-decadal Oscillation/Variability (AMO/AMV) A multi-decadal (65- to 75-year) fluctuation in the North Atlantic, in which sea surface temperatures showed warm phases during roughly 1860 to 1880 and 1930 to 1960 and cool phases during 1905 to 1925 and 1970 to 1990 with a range of approximately 0.4°C. See AMO Index, Box 2.5.

Atmosphere The gaseous envelope surrounding the Earth. The dry atmosphere consists almost entirely of nitrogen (78.1% *volume mixing ratio*) and oxygen (20.9% volume mixing ratio), together with a number of trace gases, such as argon (0.93% volume mixing ratio), helium and radiatively active *greenhouse gases* such as *carbon dioxide* (0.035%)

Glossary Annex III

volume mixing ratio) and *ozone*. In addition, the atmosphere contains the greenhouse gas water vapour, whose amounts are highly variable but typically around 1% volume mixing ratio. The atmosphere also contains clouds and *aerosols*.

Atmosphere–Ocean General Circulation Model (AOGCM) See *Climate model*.

Atmospheric boundary layer The atmospheric layer adjacent to the Earth's surface that is affected by friction against that boundary surface, and possibly by transport of heat and other variables across that surface (AMS, 2000). The lowest 100 m of the boundary layer (about 10% of the boundary layer thickness), where mechanical generation of turbulence is dominant, is called the *surface boundary layer* or *surface layer*.

Atmospheric lifetime See Lifetime.

Attribution See *Detection and attribution*.

Autotrophic respiration *Respiration* by *photosynthetic* (see *photosynthesis*) organisms (e.g., plants and algaes).

Basal lubrication Reduction of friction at the base of an *ice sheet* or *glacier* due to lubrication by meltwater. This can allow the glacier or ice sheet to slide over its base. Meltwater may be produced by pressure-induced melting, friction or geothermal heat, or surface melt may drain to the base through holes in the ice.

Baseline/reference The baseline (or reference) is the state against which change is measured. A *baseline period* is the period relative to which anomalies are computed. The baseline concentration of a trace gas is that measured at a location not influenced by local *anthropogenic* emissions.

Bayesian method/approach A Bayesian method is a method by which a statistical analysis of an unknown or uncertain quantity(ies) is carried out in two steps. First, a prior probability distribution for the uncertain quantity(ies) is formulated on the basis of existing knowledge (either by eliciting expert opinion or by using existing data and studies). At this first stage, an element of subjectivity may influence the choice, but in many cases, the prior probability distribution can be chosen as neutrally as possible, in order not to influence the final outcome of the analysis. In the second step, newly acquired data are used to update the prior distribution into a posterior distribution. The update is carried out either through an analytic computation or though numeric approximation, using a theorem formulated by and named after the British mathematician Thomas Bayes (1702–1761).

Biological pump The process of transporting carbon from the ocean's surface layers to the deep ocean by the primary production of marine phytoplankton, which converts dissolved inorganic carbon (DIC) and nutrients into organic matter through *photosynthesis*. This natural cycle is limited primarily by the availability of light and nutrients such as phosphate, nitrate and silicic acid, and micronutrients, such as iron. See also *Solubility pump*.

Biomass The total mass of living organisms in a given area or volume; dead plant material can be included as dead biomass. *Biomass burning* is the burning of living and dead vegetation.

Biome A biome is a major and distinct regional element of the *biosphere*, typically consisting of several *ecosystems* (e.g., *forests*, rivers, ponds, swamps within a *region*). Biomes are characterized by typical communities of plants and animals.

Biosphere (terrestrial and marine) The part of the Earth system comprising all *ecosystems* and living organisms, in the *atmosphere*, on land (*terrestrial biosphere*) or in the oceans (*marine biosphere*), including derived dead organic matter, such as litter, soil organic matter and oceanic detritus.

Black carbon (BC) Operationally defined *aerosol* species based on measurement of light absorption and chemical reactivity and/or thermal stability. It is sometimes referred to as *soot*.

Blocking Associated with persistent, slow-moving high-pressure systems that obstruct the prevailing westerly winds in the middle and high latitudes and the normal eastward progress of extratropical transient storm systems. It is an important component of the intraseasonal *climate variability* in the extratropics and can cause long-lived weather conditions such as cold spells in winter and summer *heat waves*.

Brewer–Dobson circulation The meridional overturning circulation of the *stratosphere* transporting air upward in the tropics, poleward to the winter hemisphere, and downward at polar and subpolar latitudes. The Brewer–Dobson circulation is driven by the interaction between upward propagating planetary waves and the mean flow.

Burden The total mass of a gaseous substance of concern in the *atmo-sphere*.

¹³C Stable *isotope* of carbon having an atomic weight of approximately 13. Measurements of the ratio of ¹³C/¹²C in *carbon dioxide* molecules are used to infer the importance of different *carbon cycle* and climate processes and the size of the terrestrial carbon *reservoir*.

¹⁴C Unstable *isotope* of carbon having an atomic weight of approximately 14, and a half-life of about 5700 years. It is often used for dating purposes going back some 40 kyr. Its variation in time is affected by the magnetic fields of the Sun and Earth, which influence its production from cosmic rays (see *Cosmogenic radioisotopes*).

Calving The breaking off of discrete pieces of ice from a *glacier*, *ice sheet* or an *ice shelf* into lake or seawater, producing icebergs. This is a form of mass loss from an ice body. See also *Mass balance/budget* (of glaciers or ice sheets).

Carbonaceous aerosol *Aerosol* consisting predominantly of organic substances and *black carbon*.

Carbon cycle The term used to describe the flow of carbon (in various forms, e.g., as *carbon dioxide*) through the *atmosphere*, ocean, terrestrial and marine *biosphere* and *lithosphere*. In this report, the reference unit for the global carbon cycle is GtC or equivalently PgC (10¹⁵g).

Carbon dioxide (CO₂) A naturally occurring gas, also a by-product of burning fossil fuels from fossil carbon deposits, such as oil, gas and coal, of *burning biomass*, of *land use* changes and of industrial processes (e.g., cement production). It is the principal *anthropogenic greenhouse gas* that affects the Earth's radiative balance. It is the reference gas against which other greenhouse gases are measured and therefore has a *Global Warming Potential* of 1.

Carbon dioxide (CO₂) fertilization The enhancement of the growth of plants as a result of increased atmospheric *carbon dioxide (CO₂)* concentration.

Carbon Dioxide Removal (CDR) Carbon Dioxide Removal methods refer to a set of techniques that aim to remove CO_2 directly from the *atmosphere* by either (1) increasing natural *sinks* for carbon or (2) using chemical engineering to remove the CO_2 , with the intent of reducing the atmospheric CO_2 concentration. CDR methods involve the ocean, land and technical systems, including such methods as *iron fertilization*, large-scale *afforestation* and direct capture of CO_2 from the atmosphere using engineered chemical means. Some CDR methods fall under the category of *geoengineering*, though this may not be the case for others, with the distinction being based on the magnitude, scale, and impact of the particular CDR activities. The boundary between CDR and *mitigation* is not clear and

Annex III Glossary

there could be some overlap between the two given current definitions (IPCC, 2012, p. 2). See also *Solar Radiation Management (SRM)*.

CFC See *Halocarbons*.

Chaotic A *dynamical system* such as the *climate system*, governed by nonlinear deterministic equations (see *Nonlinearity*), may exhibit erratic or chaotic behaviour in the sense that very small changes in the initial state of the system in time lead to large and apparently unpredictable changes in its temporal evolution. Such chaotic behaviour limits the *predictability* of the state of a nonlinear dynamical system at specific future times, although changes in its statistics may still be predictable given changes in the system parameters or boundary conditions.

Charcoal Material resulting from charring of *biomass*, usually retaining some of the microscopic texture typical of plant tissues; chemically it consists mainly of carbon with a disturbed graphitic structure, with lesser amounts of oxygen and hydrogen.

Chronology Arrangement of events according to dates or times of occurrence.

Clathrate (methane) A partly frozen slushy mix of *methane* gas and ice, usually found in sediments.

Clausius—Clapeyron equation/relationship The thermodynamic relationship between small changes in temperature and vapour pressure in an equilibrium system with condensed phases present. For trace gases such as water vapour, this relation gives the increase in equilibrium (or saturation) water vapour pressure per unit change in air temperature.

Climate Climate in a narrow sense is usually defined as the average weather, or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. The classical period for averaging these variables is 30 years, as defined by the World Meteorological Organization. The relevant quantities are most often surface variables such as temperature, precipitation and wind. Climate in a wider sense is the state, including a statistical description, of the *climate system*.

Climate–carbon cycle feedback A *climate feedback* involving changes in the properties of land and ocean *carbon cycle* in response to *climate change*. In the ocean, changes in oceanic temperature and circulation could affect the *atmosphere*—ocean *CO*₂ flux; on the continents, climate change could affect plant *photosynthesis* and soil microbial *respiration* and hence the flux of CO₂ between the atmosphere and the land *biosphere*.

Climate change Climate change refers to a change in the state of the *climate* that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or *external forcings* such as modulations of the *solar cycles*, volcanic eruptions and persistent *anthropogenic* changes in the composition of the *atmosphere* or in *land use*. Note that the *Framework Convention on Climate Change (UNFCCC)*, in its Article 1, defines climate change as: 'a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural *climate variability* observed over comparable time periods'. The UNFCCC thus makes a distinction between climate change attributable to human activities altering the atmospheric composition, and climate variability attributable to natural causes. See also *Climate change commitment, Detection and Attribution*.

Climate change commitment Due to the thermal inertia of the ocean and slow processes in the *cryosphere* and land surfaces, the *climate* would continue to change even if the atmospheric composition were held fixed at today's values. Past change in atmospheric composition leads to a *committed climate change*, which continues for as long as a radiative

imbalance persists and until all components of the *climate system* have adjusted to a new state. The further change in temperature after the composition of the *atmosphere* is held constant is referred to as the *constant composition temperature commitment* or simply *committed warming* or *warming commitment*. Climate change commitment includes other future changes, for example, in the *hydrological cycle*, in *extreme weather events*, in *extreme climate events*, and in *sea level change*. The *constant emission commitment* is the committed climate change that would result from keeping *anthropogenic* emissions constant and the *zero emission commitment* is the climate change commitment when emissions are set to zero. See also *Climate change*.

Climate feedback An interaction in which a perturbation in one climate quantity causes a change in a second, and the change in the second quantity ultimately leads to an additional change in the first. A negative *feedback* is one in which the initial perturbation is weakened by the changes it causes; a positive feedback is one in which the initial perturbation is enhanced. In this Assessment Report, a somewhat narrower definition is often used in which the climate quantity that is perturbed is the *global mean surface temperature*, which in turn causes changes in the global radiation budget. In either case, the initial perturbation can either be externally forced or arise as part of *internal variability*. See also *Climate Feedback Parameter*.

Climate Feedback Parameter A way to quantify the radiative response of the *climate system* to a *global mean surface temperature* change induced by a *radiative forcing*. It varies as the inverse of the *effective climate sensitivity*. Formally, the Climate Feedback Parameter (α ; units: W m⁻² °C⁻¹) is defined as: $\alpha = (\Delta Q - \Delta F)/\Delta T$, where Q is the global mean radiative forcing, T is the global mean air surface temperature, F is the heat flux into the ocean and Δ represents a change with respect to an unperturbed *climate*.

Climate forecast See *Climate prediction*.

Climate index A time series constructed from climate variables that provides an aggregate summary of the state of the *climate system*. For example, the difference between sea level pressure in Iceland and the Azores provides a simple yet useful historical *NAO* index. Because of their optimal properties, climate indices are often defined using *principal components*—linear combinations of climate variables at different locations that have maximum variance subject to certain normalisation constraints (e.g., the *NAM* and *SAM* indices which are principal components of Northern Hemisphere and Southern Hemisphere gridded pressure anomalies, respectively). See Box 2.5 for a summary of definitions for established observational indices. See also *Climate pattern*.

Climate model (spectrum or hierarchy) A numerical representation of the *climate system* based on the physical, chemical and biological properties of its components, their interactions and feedback processes, and accounting for some of its known properties. The climate system can be represented by models of varying complexity, that is, for any one component or combination of components a spectrum or hierarchy of models can be identified, differing in such aspects as the number of spatial dimensions, the extent to which physical, chemical or biological processes are explicitly represented or the level at which empirical parametrizations are involved. Coupled Atmosphere-Ocean General Circulation Models (AOGCMs) provide a representation of the climate system that is near or at the most comprehensive end of the spectrum currently available. There is an evolution towards more complex models with interactive chemistry and biology. Climate models are applied as a research tool to study and simulate the *climate*, and for operational purposes, including monthly, seasonal and interannual climate predictions. See also Earth System Model, Earth-System Model of Intermediate Complexity, Energy Balance Model, Process-based Model, Regional Climate Model and Semi-empirical model.

Glossary Annex III

Climate pattern A set of spatially varying coefficients obtained by "projection" (regression) of climate variables onto a *climate index* time series. When the climate index is a principal component, the climate pattern is an eigenvector of the covariance matrix, referred to as an *Empirical Orthogonal Function (EOF)* in climate science.

Climate prediction A climate prediction or *climate forecast* is the result of an attempt to produce (starting from a particular state of the *climate system*) an estimate of the actual evolution of the *climate* in the future, for example, at seasonal, interannual or decadal time scales. Because the future evolution of the climate system may be highly sensitive to initial conditions, such predictions are usually probabilistic in nature. See also *Climate projection*, *Climate scenario*, *Model initialization* and *Predictability*.

Climate projection A climate *projection* is the simulated response of the *climate system* to a *scenario* of future emission or concentration of *greenhouse gases* and *aerosols*, generally derived using *climate models*. Climate projections are distinguished from *climate predictions* by their dependence on the emission/concentration/radiative forcing scenario used, which is in turn based on assumptions concerning, for example, future socioeconomic and technological developments that may or may not be realized. See also *Climate scenario*.

Climate regime A state of the *climate system* that occurs more frequently than nearby states due to either more persistence or more frequent recurrence. In other words, a cluster in climate state space associated with a local maximum in the *probability density function*.

Climate response See *Climate sensitivity*.

Climate scenario A plausible and often simplified representation of the future *climate*, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of *anthropogenic climate change*, often serving as input to impact models. *Climate projections* often serve as the raw material for constructing climate scenarios, but climate scenarios usually require additional information such as the observed current climate. A *climate change scenario* is the difference between a climate scenario and the current climate. See also *Emission scenario*, *scenario*.

Climate sensitivity In IPCC reports, *equilibrium climate sensitivity* (units: °C) refers to the equilibrium (steady state) change in the annual *global mean surface temperature* following a doubling of the atmospheric *equivalent carbon dioxide concentration*. Owing to computational constraints, the equilibrium climate sensitivity in a *climate model* is sometimes estimated by running an atmospheric general circulation model coupled to a mixed-layer ocean model, because equilibrium climate sensitivity is largely determined by atmospheric processes. Efficient models can be run to equilibrium with a dynamic ocean. The *climate sensitivity parameter* (units: °C (W m⁻²)⁻¹) refers to the equilibrium change in the annual global mean surface temperature following a unit change in *radiative forcing*.

The effective climate sensitivity (units: °C) is an estimate of the global mean surface temperature response to doubled carbon dioxide concentration that is evaluated from model output or observations for evolving non-equilibrium conditions. It is a measure of the strengths of the climate feedbacks at a particular time and may vary with forcing history and climate state, and therefore may differ from equilibrium climate sensitivity.

The *transient climate response* (units: °C) is the change in the global mean surface temperature, averaged over a 20-year period, centred at the time of atmospheric carbon dioxide doubling, in a climate model simulation in which CO₂ increases at 1% yr⁻¹. It is a measure of the strength and rapidity of the surface temperature response to *green-house gas* forcing.

Climate sensitivity parameter See *climate sensitivity*.

Climate system The climate system is the highly complex system consisting of five major components: the *atmosphere*, the *hydrosphere*, the *cryosphere*, the *lithosphere* and the *biosphere*, and the interactions between them. The climate system evolves in time under the influence of its own internal dynamics and because of *external forcings* such as volcanic eruptions, solar variations and *anthropogenic* forcings such as the changing composition of the atmosphere and *land use change*.

Climate variability Climate variability refers to variations in the mean state and other statistics (such as standard deviations, the occurrence of extremes, etc.) of the *climate* on all *spatial and temporal scales* beyond that of individual weather events. Variability may be due to natural internal processes within the *climate system* (*internal variability*), or to variations in natural or *anthropogenic external forcing* (*external variability*). See also *Climate change*.

Cloud condensation nuclei (CCN) The subset of *aerosol* particles that serve as an initial site for the condensation of liquid water, which can lead to the formation of cloud droplets, under typical cloud formation conditions. The main factor that determines which aerosol particles are CCN at a given supersaturation is their size.

Cloud feedback A *climate feedback* involving changes in any of the properties of clouds as a response to a change in the local or *global mean surface temperature*. Understanding cloud feedbacks and determining their magnitude and sign require an understanding of how a change in *climate* may affect the spectrum of cloud types, the cloud fraction and height, the radiative properties of clouds, and finally the Earth's radiation budget. At present, cloud feedbacks remain the largest source of *uncertainty* in *climate sensitivity* estimates. See also *Cloud radiative effect*.

Cloud radiative effect The *radiative effect* of clouds relative to the identical situation without clouds. In previous IPCC reports this was called *cloud radiative forcing*, but that terminology is inconsistent with other uses of the forcing term and is not maintained in this report. See also *Cloud feedback*.

CO₂-equivalent See *Equivalent carbon dioxide*.

Cold days/cold nights Days where maximum temperature, or nights where minimum temperature, falls below the 10th *percentile*, where the respective temperature distributions are generally defined with respect to the 1961–1990 *reference* period. For the corresponding indices, see Box 2.4.

Compatible emissions *Earth System Models* that simulate the land and ocean *carbon cycle* can calculate CO_2 emissions that are compatible with a given atmospheric CO_2 concentration trajectory. The compatible emissions over a given period of time are equal to the increase of carbon over that same period of time in the sum of the three active *reservoirs*: the *atmosphere*, the land and the ocean.

Confidence The validity of a finding based on the type, amount, quality, and consistency of evidence (e.g., mechanistic understanding, theory, data, models, expert judgment) and on the degree of agreement. Confidence is expressed qualitatively (Mastrandrea et al., 2010). See Figure 1.11 for the levels of confidence and Table 1.1 for the list of *likelihood* qualifiers. See also *Uncertainty*.

Convection Vertical motion driven by buoyancy forces arising from static instability, usually caused by near-surface cooling or increases in salinity in the case of the ocean and near-surface warming or cloud-top radiative cooling in the case of the *atmosphere*. In the atmosphere convection gives rise to cumulus clouds and precipitation and is effective at both scavenging and vertically transporting chemical species. In the ocean convection can carry surface waters to deep within the ocean.

Annex III Glossary

Cosmogenic radioisotopes Rare radioactive *isotopes* that are created by the interaction of a high-energy cosmic ray particles with atoms nuclei. They are often used as indicator of *solar activity* which modulates the cosmic rays intensity or as tracers of atmospheric transport processes, and are also called *cosmogenic radionuclides*.

Cryosphere All regions on and beneath the surface of the Earth and ocean where water is in solid form, including *sea ice*, lake ice, river ice, snow cover, *glaciers* and *ice sheets*, and *frozen ground* (which includes *permafrost*).

Dansgaard–Oeschger events Abrupt events characterized in Greenland *ice cores* and in *palaeoclimate* records from the nearby North Atlantic by a cold glacial state, followed by a rapid transition to a warmer phase, and a slow cooling back to glacial conditions. Counterparts of Dansgaard–Oeschger events are observed in other regions as well.

Deforestation Conversion of *forest* to non-forest. For a discussion of the term *forest* and related terms such as *afforestation*, *reforestation*, and *deforestation* see the IPCC Special Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

Deglaciation/glacial termination Transitions from full glacial conditions (*ice age*) to warm *interglacials* characterized by global warming and sea level rise due to change in continental ice volume.

Detection and attribution *Detection of change* is defined as the process of demonstrating that *climate* or a system affected by climate has changed in some defined statistical sense, without providing a reason for that change. An identified change is detected in observations if its *likelihood* of occurrence by chance due to *internal variability* alone is determined to be small, for example, <10%. *Attribution* is defined as the process of evaluating the relative contributions of multiple causal factors to a change or event with an assignment of statistical confidence (Hegerl et al., 2010).

Diatoms Silt-sized algae that live in surface waters of lakes, rivers and oceans and form shells of opal. Their species distribution in ocean cores is often related to past *sea surface temperatures*.

Direct (aerosol) effect See *Aerosol-radiation interaction*.

Direct Air Capture Chemical process by which a pure CO_2 stream is produced by capturing CO_2 from the ambient air.

Diurnal temperature range The difference between the maximum and minimum temperature during a 24-hour period.

Dobson Unit (DU) A unit to measure the total amount of *ozone* in a vertical column above the Earth's surface (*total column ozone*). The number of Dobson Units is the thickness in units of 10^{-5} m that the ozone column would occupy if compressed into a layer of uniform density at a pressure of 1013 hPa and a temperature of 0° C. One DU corresponds to a column of ozone containing 2.69×10^{20} molecules per square metre. A typical value for the amount of ozone in a column of the Earth's *atmosphere*, although very variable, is 300 DU.

Downscaling Downscaling is a method that derives local- to regional-scale (10 to 100 km) information from larger-scale models or data analyses. Two main methods exist: *dynamical downscaling* and *empirical/statistical downscaling*. The dynamical method uses the output of *regional climate models*, global models with variable spatial *resolution* or high-resolution global models. The empirical/statistical methods develop statistical relationships that link the large-scale atmospheric variables with local/regional

climate variables. In all cases, the quality of the driving model remains an important limitation on the quality of the downscaled information.

Drought A period of abnormally dry weather long enough to cause a serious hydrological imbalance. Drought is a relative term; therefore any discussion in terms of precipitation deficit must refer to the particular precipitation-related activity that is under discussion. For example, shortage of precipitation during the growing season impinges on crop production or *ecosystem* function in general (due to *soil moisture* drought, also termed *agricultural drought*), and during the *runoff* and percolation season primarily affects water supplies (*hydrological drought*). Storage changes in soil moisture and groundwater are also affected by increases in actual *evapotranspiration* in addition to reductions in precipitation. A period with an abnormal precipitation deficit is defined as a *meteorological drought*. A *megadrought* is a very lengthy and pervasive drought, lasting much longer than normal, usually a decade or more. For the corresponding indices, see Box 2.4.

Dynamical system A process or set of processes whose evolution in time is governed by a set of deterministic physical laws. The *climate system* is a dynamical system. See also *Abrupt climate change*, *Chaotic*, *Nonlinearity* and *Predictability*.

Earth System Model (ESM) A coupled *atmosphere—ocean general circulation model* in which a representation of the *carbon cycle* is included, allowing for interactive calculation of atmospheric *CO*₂ or *compatible emissions*. Additional components (e.g., atmospheric chemistry, *ice sheets*, dynamic vegetation, nitrogen cycle, but also urban or crop models) may be included. See also *Climate model*.

Earth System Model of Intermediate Complexity (EMIC) A *climate model* attempting to include all the most important earth system processes as in ESMs but at a lower *resolution* or in a simpler, more idealized fashion.

Earth System sensitivity The equilibrium temperature response of the coupled *atmosphere*—ocean—*cryosphere*—vegetation—*carbon cycle* system to a doubling of the atmospheric *CO*₂ concentration is referred to as Earth System sensitivity. Because it allows slow components (e.g., *ice sheets*, vegetation) of the *climate system* to adjust to the external perturbation, it may differ substantially from the *climate sensitivity* derived from coupled atmosphere—ocean models.

Ecosystem An ecosystem is a functional unit consisting of living organisms, their non-living environment, and the interactions within and between them. The components included in a given ecosystem and its spatial boundaries depend on the purpose for which the ecosystem is defined: in some cases they are relatively sharp, while in others they are diffuse. Ecosystem boundaries can change over time. Ecosystems are nested within other ecosystems, and their scale can range from very small to the entire *biosphere*. In the current era, most ecosystems either contain people as key organisms, or are influenced by the effects of human activities in their environment.

Effective climate sensitivity See *Climate sensitivity*.

Effective radiative forcing See *Radiative forcing*.

Efficacy A measure of how effective a *radiative forcing* from a given *anthropogenic* or natural mechanism is at changing the equilibrium *global mean surface temperature* compared to an equivalent radiative forcing from *carbon dioxide*. A carbon dioxide increase by definition has an efficacy of 1.0. Variations in climate efficacy may result from *rapid adjustments* to the applied forcing, which differ with different forcings.

Ekman pumping Frictional stress at the surface between two fluids (atmosphere and ocean) or between a fluid and the adjacent solid surface (the Earth's surface) forces a circulation. When the resulting mass

transport is converging, mass conservation requires a vertical flow away from the surface. This is called Ekman pumping. The opposite effect, in case of divergence, is called *Ekman suction*. The effect is important in both the atmosphere and the ocean.

Ekman transport The total transport resulting from a balance between the Coriolis force and the frictional stress due to the action of the wind on the ocean surface. See also *Ekman pumping*.

Electromagnetic spectrum Wavelength or energy range of all electromagnetic radiation. In terms of *solar radiation*, the *spectral irradiance* is the power arriving at the Earth per unit area, per unit wavelength.

El Niño-Southern Oscillation (ENSO) The term El Niño was initially used to describe a warm-water current that periodically flows along the coast of Ecuador and Peru, disrupting the local fishery. It has since become identified with a basin-wide warming of the tropical Pacific Ocean east of the dateline. This oceanic event is associated with a fluctuation of a globalscale tropical and subtropical surface pressure pattern called the Southern Oscillation. This coupled atmosphere—ocean phenomenon, with preferred time scales of two to about seven years, is known as the El Niño-Southern Oscillation (ENSO). It is often measured by the surface pressure anomaly difference between Tahiti and Darwin or the sea surface temperatures in the central and eastern equatorial Pacific. During an ENSO event, the prevailing trade winds weaken, reducing upwelling and altering ocean currents such that the sea surface temperatures warm, further weakening the trade winds. This event has a great impact on the wind, sea surface temperature and precipitation patterns in the tropical Pacific. It has climatic effects throughout the Pacific region and in many other parts of the world, through global teleconnections. The cold phase of ENSO is called La Niña. For the corresponding indices, see Box 2.5.

Emission scenario A plausible representation of the future development of emissions of substances that are potentially radiatively active (e.g., greenhouse gases, aerosols) based on a coherent and internally consistent set of assumptions about driving forces (such as demographic and socioeconomic development, technological change) and their key relationships. Concentration scenarios, derived from emission scenarios, are used as input to a *climate model* to compute *climate projections*. In IPCC (1992) a set of emission scenarios was presented which were used as a basis for the climate projections in IPCC (1996). These emission scenarios are referred to as the IS92 scenarios. In the IPCC Special Report on Emission Scenarios (Nakićenović and Swart, 2000) emission scenarios, the so-called SRES scenarios, were published, some of which were used, among others, as a basis for the climate projections presented in Chapters 9 to 11 of IPCC (2001) and Chapters 10 and 11 of IPCC (2007). New emission scenarios for climate change, the four Representative Concentration Pathways, were developed for, but independently of, the present IPCC assessment. See also Climate scenario and Scenario.

Energy balance The difference between the total incoming and total outgoing energy. If this balance is positive, warming occurs; if it is negative, cooling occurs. Averaged over the globe and over long time periods, this balance must be zero. Because the *climate system* derives virtually all its energy from the Sun, zero balance implies that, globally, the absorbed *solar radiation*, that is, *incoming solar radiation* minus reflected solar radiation at the top of the *atmosphere* and *outgoing longwave radiation* emitted by the climate system are equal. See also *Energy budget*.

Energy Balance Model (EBM) An energy balance model is a simplified model that analyses the *energy budget* of the Earth to compute changes in the *climate*. In its simplest form, there is no explicit spatial dimension and the model then provides an estimate of the changes in globally averaged temperature computed from the changes in radiation. This zero-dimensional energy balance model can be extended to a one-

dimensional or two-dimensional model if changes to the energy budget with respect to latitude, or both latitude and longitude, are explicitly considered. See also *Climate model*.

Energy budget (of the Earth) The Earth is a physical system with an energy budget that includes all gains of incoming energy and all losses of outgoing energy. The Earth's energy budget is determined by measuring how much energy comes into the Earth system from the Sun, how much energy is lost to space, and accounting for the remainder on Earth and its atmosphere. Solar radiation is the dominant source of energy into the Earth system. Incoming solar energy may be scattered and reflected by clouds and aerosols or absorbed in the atmosphere. The transmitted radiation is then either absorbed or reflected at the Earth's surface. The average albedo of the Earth is about 0.3, which means that 30% of the incident solar energy is reflected into space, while 70% is absorbed by the Earth. Radiant solar or shortwave energy is transformed into sensible heat, latent energy (involving different water states), potential energy, and kinetic energy before being emitted as infrared radiation. With the average surface temperature of the Earth of about 15°C (288 K), the main outgoing energy flux is in the infrared part of the spectrum. See also *Energy balance*, Latent heat flux, Sensible heat flux.

Ensemble A collection of model simulations characterizing a *climate prediction* or *projection*. Differences in initial conditions and model formulation result in different evolutions of the modelled system and may give information on *uncertainty* associated with model error and error in initial conditions in the case of *climate forecasts* and on uncertainty associated with model error and with internally generated *climate variability* in the case of climate projections.

Equilibrium and transient climate experiment An *equilibrium climate experiment* is a *climate model* experiment in which the model is allowed to fully adjust to a change in *radiative forcing*. Such experiments provide information on the difference between the initial and final states of the model, but not on the time-dependent response. If the forcing is allowed to evolve gradually according to a prescribed *emission scenario*, the time-dependent response of a climate model may be analysed. Such an experiment is called a *transient climate experiment*. See also *Climate projection*.

Equilibrium climate sensitivity See *Climate sensitivity*.

Equilibrium line The spatially averaged boundary at a given moment, usually chosen as the seasonal *mass budget* minimum at the end of summer, between the region on a *glacier* where there is a net annual loss of ice mass (*ablation* area) and that where there is a net annual gain (*accumulation* area). The altitude of this boundary is referred to as equilibrium line altitude (ELA).

Equivalent carbon dioxide (CO₂) concentration The concentration of *carbon dioxide* that would cause the same *radiative forcing* as a given mixture of carbon dioxide and other forcing components. Those values may consider only *greenhouse gases*, or a combination of greenhouse gases and *aerosols*. Equivalent carbon dioxide concentration is a *metric* for comparing radiative forcing of a mix of different greenhouse gases at a particular time but does not imply equivalence of the corresponding *climate change* responses nor future forcing. There is generally no connection between *equivalent carbon dioxide emissions* and resulting equivalent carbon dioxide concentrations.

Equivalent carbon dioxide (CO₂) emission The amount of *carbon dioxide* emission that would cause the same integrated *radiative forcing*, over a given time horizon, as an emitted amount of a *greenhouse gas* or a mixture of greenhouse gases. The equivalent carbon dioxide emission is obtained by multiplying the emission of a greenhouse gas by its *Global Warming Potential* for the given time horizon. For a mix of greenhouse

Annex III Glossary

gases it is obtained by summing the equivalent carbon dioxide emissions of each gas. Equivalent carbon dioxide emission is a common scale for comparing emissions of different greenhouse gases but does not imply equivalence of the corresponding *climate change* responses. See also *Equivalent carbon dioxide concentration*.

Evapotranspiration The combined process of evaporation from the Earth's surface and transpiration from vegetation.

Extended Concentration Pathways See *Representative Concentration Pathways*.

External forcing External forcing refers to a forcing agent outside the *climate system* causing a change in the climate system. Volcanic eruptions, solar variations and *anthropogenic* changes in the composition of the *atmosphere* and *land use change* are external forcings. Orbital forcing is also an external forcing as the *insolation* changes with orbital parameters eccentricity, tilt and precession of the equinox.

Extratropical cyclone A large-scale (of order 1000 km) storm in the middle or high latitudes having low central pressure and fronts with strong horizontal gradients in temperature and humidity. A major cause of extreme wind speeds and heavy precipitation especially in wintertime.

Extreme climate event See *Extreme weather event*.

Extreme sea level See *Storm surge.*

Extreme weather event An extreme weather event is an event that is rare at a particular place and time of year. Definitions of *rare* vary, but an extreme weather event would normally be as rare as or rarer than the 10th or 90th *percentile* of a *probability density function* estimated from observations. By definition, the characteristics of what is called *extreme weather* may vary from place to place in an absolute sense. When a pattern of extreme weather persists for some time, such as a season, it may be classed as an *extreme climate event*, especially if it yields an average or total that is itself extreme (e.g., *drought* or heavy rainfall over a season).

Faculae Bright patches on the Sun. The area covered by faculae is greater during periods of high *solar activity*.

Feedback See Climate feedback.

Fingerprint The *climate* response pattern in space and/or time to a specific forcing is commonly referred to as a fingerprint. The spatial patterns of sea level response to melting of *glaciers* or *ice sheets* (or other changes in surface loading) are also referred to as fingerprints. Fingerprints are used to detect the presence of this response in observations and are typically estimated using forced *climate model* simulations.

Flux adjustment To avoid the problem of coupled *Atmosphere—Ocean General Circulation Models (AOGCMs)* drifting into some unrealistic *climate* state, adjustment terms can be applied to the atmosphere-ocean fluxes of heat and moisture (and sometimes the surface stresses resulting from the effect of the wind on the ocean surface) before these fluxes are imposed on the model ocean and atmosphere. Because these adjustments are pre-computed and therefore independent of the coupled model integration, they are uncorrelated with the anomalies that develop during the integration.

Forest A vegetation type dominated by trees. Many definitions of the term *forest* are in use throughout the world, reflecting wide differences in biogeophysical conditions, social structure and economics. For a discussion of the term *forest* and related terms such as *afforestation*, *reforestation* and *deforestation* see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

Fossil fuel emissions Emissions of *greenhouse gases* (in particular *carbon dioxide*), other trace gases and *aerosols* resulting from the combustion of fuels from fossil carbon deposits such as oil, gas and coal.

Framework Convention on Climate Change See *United Nations* Framework Convention on Climate Change (UNFCCC).

Free atmosphere The atmospheric layer that is negligibly affected by friction against the Earth's surface, and which is above the *atmospheric boundary layer*.

Frozen ground Soil or rock in which part or all of the *pore water* is frozen. Frozen ground includes *permafrost*. Ground that freezes and thaws annually is called *seasonally frozen ground*.

General circulation The large-scale motions of the *atmosphere* and the ocean as a consequence of differential heating on a rotating Earth. General circulation contributes to the *energy balance* of the system through transport of heat and momentum.

General Circulation Model (GCM) See *Climate model*.

Geoengineering Geoengineering refers to a broad set of methods and technologies that aim to deliberately alter the *climate system* in order to alleviate the impacts of *climate change*. Most, but not all, methods seek to either (1) reduce the amount of absorbed solar energy in the climate system (*Solar Radiation Management*) or (2) increase net carbon sinks from the *atmosphere* at a scale sufficiently large to alter *climate* (*Carbon Dioxide Removal*). Scale and intent are of central importance. Two key characteristics of geoengineering methods of particular concern are that they use or affect the climate system (e.g., atmosphere, land or ocean) globally or regionally and/or could have substantive unintended effects that cross national boundaries. Geoengineering is different from weather modification and ecological engineering, but the boundary can be fuzzy (IPCC, 2012, p. 2).

Geoid The equipotential surface having the same geopotential at each latitude and longitude around the world (geodesists denoting this potential W0) that best approximates the *mean sea level*. It is the surface of reference for measurement of altitude. In practice, several variations of definitions of the geoid exist depending on the way the permanent tide (the zero-frequency gravitational tide due to the Sun and Moon) is considered in geodetic studies.

Geostrophic winds or currents A wind or current that is in balance with the horizontal pressure gradient and the Coriolis force, and thus is outside of the influence of friction. Thus, the wind or current is directly parallel to isobars and its speed is proportional to the horizontal pressure gradient.

Glacial–interglacial cycles Phase of the Earth's history marked by large changes in continental ice volume and global sea level. See also *Ice* age and *Interglacials*.

Glacial isostatic adjustment (GIA) The deformation of the Earth and its gravity field due to the response of the earth–ocean system to changes in ice and associated water loads. It is sometimes referred to as *glacio-hydro isostasy*. It includes vertical and horizontal deformations of the Earth's surface and changes in *geoid* due to the redistribution of mass during the ice—ocean mass exchange.

Glacier A perennial mass of land ice that originates from compressed snow, shows evidence of past or present flow (through internal deformation and/or sliding at the base) and is constrained by internal stress and friction at the base and sides. A glacier is maintained by accumulation of snow at high altitudes, balanced by melting at low altitudes and/or discharge into the sea. An ice mass of the same origin as glaciers, but of continental size, is called an *ice sheet*. For the purpose of simplicity in this Assessment Report, all ice masses other than ice sheets are referred to as

glaciers. See also Equilibrium line and Mass balance/budget (of glaciers or ice sheets).

Global dimming Global dimming refers to a widespread reduction of *solar radiation* received at the surface of the Earth from about the year 1961 to around 1990.

Global mean surface temperature An estimate of the global mean surface air temperature. However, for changes over time, only anomalies, as departures from a climatology, are used, most commonly based on the area-weighted global average of the *sea surface temperature* anomaly and *land surface air temperature* anomaly.

Global Warming Potential (GWP) An index, based on radiative properties of *greenhouse gases*, measuring the *radiative forcing* following a pulse emission of a unit mass of a given greenhouse gas in the present-day *atmosphere* integrated over a chosen time horizon, relative to that of *carbon dioxide*. The GWP represents the combined effect of the differing times these gases remain in the atmosphere and their relative effectiveness in causing radiative forcing. The *Kyoto Protocol* is based on GWPs from pulse emissions over a 100-year time frame.

Greenhouse effect The infrared *radiative effect* of all infrared-absorbing constituents in the *atmosphere*. *Greenhouse gases*, clouds, and (to a small extent) *aerosols* absorb *terrestrial radiation* emitted by the Earth's surface and elsewhere in the atmosphere. These substances emit *infrared radiation* in all directions, but, everything else being equal, the net amount emitted to space is normally less than would have been emitted in the absence of these absorbers because of the decline of temperature with altitude in the *troposphere* and the consequent weakening of emission. An increase in the concentration of greenhouse gases increases the magnitude of this effect; the difference is sometimes called the enhanced greenhouse effect. The change in a greenhouse gas concentration because of *anthropogenic* emissions contributes to an *instantaneous radiative forcing*. Surface temperature and troposphere warm in response to this forcing, gradually restoring the radiative balance at the top of the atmosphere.

Greenhouse gas (GHG) Greenhouse gases are those gaseous constituents of the *atmosphere*, both natural and *anthropogenic*, that absorb and emit radiation at specific wavelengths within the spectrum of *terrestrial radiation* emitted by the Earth's surface, the atmosphere itself, and by clouds. This property causes the *greenhouse effect*. Water vapour (H_2O), *carbon dioxide* (CO_2), *nitrous oxide* (N_2O), *methane* (CH_4) and *ozone* (O_3) are the primary greenhouse gases in the Earth's atmosphere. Moreover, there are a number of entirely human-made greenhouse gases in the atmosphere, such as the *halocarbons* and other chlorine- and bromine-containing substances, dealt with under the *Montreal Protocol*. Beside CO_2 , N_2O and CH_4 , the *Kyoto Protocol* deals with the greenhouse gases sulphur hexafluoride (SF_6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs). For a list of *well-mixed greenhouse gases*, see Table 2.A.1.

Gross Primary Production (GPP) The amount of carbon fixed by the autotrophs (e.g. plants and algaes).

Grounding line The junction between a *glacier* or *ice sheet* and *ice shelf*; the place where ice starts to float. This junction normally occurs over a finite zone, rather than at a line.

Gyre Basin-scale ocean horizontal circulation pattern with slow flow circulating around the ocean basin, closed by a strong and narrow (100 to 200 km wide) boundary current on the western side. The subtropical gyres in each ocean are associated with high pressure in the centre of the gyres; the subpolar gyres are associated with low pressure.

Hadley Circulation A direct, thermally driven overturning cell in the *atmosphere* consisting of poleward flow in the upper *troposphere*, subsiding air into the subtropical anticyclones, return flow as part of the trade

winds near the surface, and with rising air near the equator in the so-called *Inter-Tropical Convergence Zone*.

Halocarbons A collective term for the group of partially halogenated organic species, which includes the chlorofluorocarbons (*CFCs*), hydrochlorofluorocarbons (*HCFCs*), hydrofluorocarbons (*HFCs*), halons, methyl chloride and methyl bromide. Many of the halocarbons have large *Global Warming Potentials*. The chlorine and bromine-containing halocarbons are also involved in the depletion of the *ozone layer*.

Halocline A layer in the oceanic water column in which salinity changes rapidly with depth. Generally saltier water is denser and lies below less salty water. In some high latitude oceans the surface waters may be colder than the deep waters and the halocline is responsible for maintaining water column stability and isolating the surface waters from the deep waters. See also *Thermocline*.

Halosteric See *Sea level change*.

HCFC See *Halocarbons*.

Heat wave A period of abnormally and uncomfortably hot weather. See also *Warm spell*.

Heterotrophic respiration The conversion of organic matter to *carbon dioxide* by organisms other than autotrophs.

HFC See *Halocarbons*.

Hindcast or retrospective forecast A forecast made for a period in the past using only information available before the beginning of the forecast. A sequence of hindcasts can be used to calibrate the forecast system and/or provide a measure of the average skill that the forecast system has exhibited in the past as a guide to the skill that might be expected in the future.

Holocene The Holocene Epoch is the latter of two epochs in the *Quaternary* System, extending from 11.65 ka (thousand years before 1950) to the present. It is also known as *Marine Isotopic Stage (MIS) 1* or *current interglacial*.

Hydroclimate Part of the *climate* pertaining to the hydrology of a *region*.

Hydrological cycle The cycle in which water evaporates from the oceans and the land surface, is carried over the Earth in atmospheric circulation as water vapour, condenses to form clouds, precipitates over ocean and land as rain or snow, which on land can be intercepted by trees and vegetation, provides *runoff* on the land surface, infiltrates into soils, recharges groundwater, discharges into streams and ultimately flows out into the oceans, from which it will eventually evaporate again. The various systems involved in the hydrological cycle are usually referred to as hydrological systems.

Hydrosphere The component of the *climate system* comprising liquid surface and subterranean water, such as oceans, seas, rivers, fresh water lakes, underground water, etc.

Hypsometry The distribution of land or ice surface as a function of altitude.

Ice age An ice age or *glacial period* is characterized by a long-term reduction in the temperature of the Earth's *climate*, resulting in growth of *ice sheets* and *glaciers*.

Ice—albedo feedback A *climate feedback* involving changes in the Earth's surface *albedo*. Snow and ice have an albedo much higher (up to ~0.8) than the average planetary albedo (~0.3). With increasing temperatures, it is anticipated that snow and ice extent will decrease, the Earth's overall albedo will decrease and more *solar radiation* will be absorbed, warming the Earth further.

Annex III Glossary

Ice core A cylinder of ice drilled out of a *glacier* or *ice sheet*.

Ice sheet A mass of land ice of continental size that is sufficiently thick to cover most of the underlying bed, so that its shape is mainly determined by its dynamics (the flow of the ice as it deforms internally and/or slides at its base). An ice sheet flows outward from a high central ice plateau with a small average surface slope. The margins usually slope more steeply, and most ice is discharged through fast flowing *ice streams* or *outlet glaciers*, in some cases into the sea or into *ice shelves* floating on the sea. There are only two ice sheets in the modern world, one on Greenland and one on Antarctica. During glacial periods there were others.

Ice shelf A floating slab of ice of considerable thickness extending from the coast (usually of great horizontal extent with a very gently sloping surface), often filling embayments in the coastline of an *ice sheet*. Nearly all ice shelves are in Antarctica, where most of the ice discharged into the ocean flows via ice shelves.

Ice stream A stream of ice with strongly enhanced flow that is part of an *ice sheet*. It is often separated from surrounding ice by strongly sheared, crevassed margins. See also *Outlet glacier*.

Incoming solar radiation See *Insolation*.

Indian Ocean Dipole (IOD) Large—scale mode of interannual variability of *sea surface temperature* in the Indian Ocean. This pattern manifests through a zonal gradient of tropical sea surface temperature, which in one extreme phase in boreal autumn shows cooling off Sumatra and warming off Somalia in the west, combined with anomalous easterlies along the equator.

Indirect aerosol effect See *Aerosol-cloud interaction*.

Industrial Revolution A period of rapid industrial growth with farreaching social and economic consequences, beginning in Britain during the second half of the 18th century and spreading to Europe and later to other countries including the United States. The invention of the steam engine was an important trigger of this development. The industrial revolution marks the beginning of a strong increase in the use of fossil fuels and emission of, in particular, fossil *carbon dioxide*. In this report the terms *preindustrial* and *industrial* refer, somewhat arbitrarily, to the periods before and after 1750, respectively.

Infrared radiation See *Terrestrial radiation*.

Insolation The amount of *solar radiation* reaching the Earth by latitude and by season measured in W m⁻². Usually *insolation* refers to the radiation arriving at the top of the *atmosphere*. Sometimes it is specified as referring to the radiation arriving at the Earth's surface. See also *Total Solar Irradiance*.

Interglacials or interglaciations The warm periods between *ice age* glaciations. Often defined as the periods at which sea levels were close to present sea level. For the *Last Interglacial (LIG)* this occurred between about 129 and 116 ka (thousand years) before present (defined as 1950) although the warm period started in some areas a few thousand years earlier. In terms of the oxygen *isotope* record interglaciations are defined as the interval between the midpoint of the preceding termination and the onset of the next glaciation. The present interglaciation, the *Holocene*, started at 11.65 ka before present although globally sea levels did not approach their present position until about 7 ka before present.

Internal variability See *Climate variability*.

Inter-Tropical Convergence Zone (ITCZ) The Inter-Tropical Convergence Zone is an equatorial zonal belt of low pressure, strong *convection* and heavy precipitation near the equator where the northeast trade winds meet the southeast trade winds. This band moves seasonally.

Iron fertilization Deliberate introduction of iron to the upper ocean intended to enhance biological productivity which can sequester additional atmospheric *carbon dioxide* into the oceans.

Irreversibility A perturbed state of a *dynamical system* is defined as irreversible on a given timescale, if the recovery timescale from this state due to natural processes is significantly longer than the time it takes for the system to reach this perturbed state. In the context of WGI, the time scale of interest is centennial to millennial. See also *Tipping point*.

Isostatic or Isostasy Isostasy refers to the response of the earth to changes in surface load. It includes the deformational and gravitational response. This response is elastic on short time scales, as in the earth–ocean response to recent changes in mountain glaciation, or viscoelastic on longer time scales, as in the response to the last *deglaciation* following the *Last Glacial Maximum*. See also *Glacial Isostatic Adjustment (GIA)*.

Isotopes Atoms of the same chemical element that have the same the number of protons but differ in the number of neutrons. Some protonneutron configurations are stable (stable isotopes), others are unstable undergoing spontaneous radioactive decay (*radioisotopes*). Most elements have more than one stable isotope. Isotopes can be used to trace transport processes or to study processes that change the isotopic ratio. Radioisotopes provide in addition time information that can be used for radiometric dating.

Kyoto Protocol The Kyoto Protocol to the *United Nations Framework Convention on Climate Change (UNFCCC)* was adopted in 1997 in Kyoto, Japan, at the Third Session of the Conference of the Parties (COP) to the UNFCCC. It contains legally binding commitments, in addition to those included in the UNFCCC. Countries included in Annex B of the Protocol (most Organisation for Economic Cooperation and Development countries and countries with economies in transition) agreed to reduce their *anthropogenic greenhouse gas* emissions (*carbon dioxide*, *methane*, *nitrous oxide*, hydrofluorocarbons, perfluorocarbons, and sulphur hexafluoride) by at least 5% below 1990 levels in the commitment period 2008–2012. The Kyoto Protocol entered into force on 16 February 2005.

Land surface air temperature The surface air temperature as measured in well-ventilated screens over land at 1.5 m above the ground.

Land use and Land use change *Land use* refers to the total of arrangements, activities and inputs undertaken in a certain land cover type (a set of human actions). The term *land use* is also used in the sense of the social and economic purposes for which land is managed (e.g., grazing, timber extraction and conservation). *Land use change* refers to a change in the use or management of land by humans, which may lead to a change in land cover. Land cover and land use change may have an impact on the surface *albedo*, *evapotranspiration*, *sources* and *sinks* of *greenhouse gases*, or other properties of the *climate system* and may thus give rise to *radiative forcing* and/or other impacts on *climate*, locally or globally. See also the IPCC Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000).

Land water storage Water stored on land other than in *glaciers* and *ice sheets* (that is water stored in rivers, lakes, wetlands, the vadose zone, aquifers, reservoirs, snow and *permafrost*). Changes in land water storage driven by *climate* and human activities contribute to *sea level change*.

La Niña See El Niño-Southern Oscillation.

Lapse rate The rate of change of an atmospheric variable, usually temperature, with height. The lapse rate is considered positive when the variable decreases with height.

Last Glacial Maximum (LGM) The period during the last *ice age* when the *glaciers* and *ice sheets* reached their maximum extent, approximately

21 ka ago. This period has been widely studied because the *radiative forcings* and boundary conditions are relatively well known.

Last Interglacial (LIG) See Interglacials.

Latent heat flux The turbulent flux of heat from the Earth's surface to the *atmosphere* that is associated with evaporation or condensation of water vapour at the surface; a component of the surface *energy budget*.

Lifetime Lifetime is a general term used for various time scales characterizing the rate of processes affecting the concentration of trace gases. The following lifetimes may be distinguished:

Turnover time (7) (also called *global atmospheric lifetime*) is the ratio of the mass M of a *reservoir* (e.g., a gaseous compound in the *atmosphere*) and the total rate of removal S from the reservoir: T = M/S. For each removal process, separate turnover times can be defined. In soil carbon biology, this is referred to as *Mean Residence Time*.

Adjustment time or response time (T_a) is the time scale characterizing the decay of an instantaneous pulse input into the reservoir. The term adjustment time is also used to characterize the adjustment of the mass of a reservoir following a step change in the source strength. Half-life or decay constant is used to quantify a first-order exponential decay process. See Response time for a different definition pertinent to climate variations.

The term *lifetime* is sometimes used, for simplicity, as a surrogate for *adjustment time*.

In simple cases, where the global removal of the compound is directly proportional to the total mass of the reservoir, the adjustment time equals the turnover time: $T = T_a$. An example is CFC-11, which is removed from the atmosphere only by photochemical processes in the stratosphere. In more complicated cases, where several reservoirs are involved or where the removal is not proportional to the total mass, the equality $T = T_a$ no longer holds. Carbon dioxide (CO₂) is an extreme example. Its turnover time is only about 4 years because of the rapid exchange between the atmosphere and the ocean and terrestrial biota. However, a large part of that CO₂ is returned to the atmosphere within a few years. Thus, the adjustment time of CO₂ in the atmosphere is actually determined by the rate of removal of carbon from the surface layer of the oceans into its deeper layers. Although an approximate value of 100 years may be given for the adjustment time of CO₂ in the atmosphere, the actual adjustment is faster initially and slower later on. In the case of *methane* (CH₄), the adjustment time is different from the turnover time because the removal is mainly through a chemical reaction with the hydroxyl radical (OH), the concentration of which itself depends on the CH₄ concentration. Therefore, the CH₄ removal rate S is not proportional to its total mass M.

Likelihood The chance of a specific outcome occurring, where this might be estimated probabilistically. This is expressed in this report using a standard terminology, defined in Table 1.1. See also *Confidence* and *Uncertainty*.

Lithosphere The upper layer of the solid Earth, both continental and oceanic, which comprises all crustal rocks and the cold, mainly elastic part of the uppermost mantle. Volcanic activity, although part of the lithosphere, is not considered as part of the *climate system*, but acts as an *external forcing* factor. See also *Isostatic*.

Little Ice Age (LIA) An interval during the last millennium characterized by a number of extensive expansions of mountain *glaciers* and moderate retreats in between them, both in the Northern and Southern Hemispheres. The timing of glacial advances differs between *regions* and the LIA is, therefore, not clearly defined in time. Most definitions lie in the

period 1400 CE and 1900 CE. Currently available *reconstructions* of average Northern Hemisphere temperature indicate that the coolest periods at the hemispheric scale may have occurred from 1450 to 1850 CE.

Longwave radiation See *Terrestrial radiation*.

Madden–Julian Oscillation (MJO) The largest single component of tropical atmospheric intraseasonal variability (periods from 30 to 90 days). The MJO propagates eastwards at around 5 m s⁻¹ in the form of a large-scale coupling between atmospheric circulation and deep *convection*. As it progresses, it is associated with large regions of both enhanced and suppressed rainfall, mainly over the Indian and western Pacific Oceans. Each MJO event lasts approximately 30 to 60 days, hence the MJO is also known as the 30- to 60-day wave, or the intraseasonal oscillation.

Marine-based ice sheet An *ice sheet* containing a substantial region that rests on a bed lying below sea level and whose perimeter is in contact with the ocean. The best known example is the West Antarctic ice sheet.

Mass balance/budget (of glaciers or ice sheets) The balance between the mass input to the ice body (*accumulation*) and the mass loss (*ablation* and iceberg *calving*) over a stated period of time, which is often a year or a season. Point mass balance refers to the mass balance at a particular location on the *glacier* or *ice sheet*. Surface mass balance is the difference between surface accumulation and surface ablation. The input and output terms for mass balance are:

Accumulation All processes that add to the mass of a glacier. The main contribution to accumulation is snowfall. Accumulation also includes deposition of hoar, freezing rain, other types of solid precipitation, gain of wind-blown snow, and avalanching.

Ablation Surface processes that reduce the mass of a glacier. The main contributor to ablation is melting with *runoff* but on some glaciers sublimation, loss of wind-blown snow and avalanching are also significant processes of ablation.

Discharge/outflow Mass loss by iceberg calving or ice discharge across the *grounding line* of a floating *ice shelf*. Although often treated as an ablation term, in this report iceberg calving and discharge is considered separately from surface ablation.

Mean sea level The surface level of the ocean at a particular point averaged over an extended period of time such as a month or year. Mean sea level is often used as a national datum to which heights on land are referred.

Medieval Climate Anomaly (MCA) See Medieval Warm Period.

Medieval Warm Period (MWP) An interval of relatively warm conditions and other notable *climate* anomalies such as more extensive *drought* in some continental *regions*. The timing of this interval is not clearly defined, with different records showing onset and termination of the warmth at different times, and some showing intermittent warmth. Most definitions lie within the period 900 to 1400 CE. Currently available *reconstructions* of average Northern Hemisphere temperature indicate that the warmest period at the hemispheric scale may have occurred from 950 to 1250 CE. Currently available records and temperature reconstructions indicate that average temperatures during parts of the MWP were indeed warmer in the context of the last 2 kyr, though the warmth may not have been as ubiquitous across seasons and geographical regions as the 20th century warming. It is also called *Medieval Climate Anomaly*.

Meridional Overturning Circulation (MOC) Meridional (northsouth) overturning circulation in the ocean quantified by zonal (east—west) sums of mass transports in depth or density layers. In the North Atlantic, away from the subpolar *regions*, the MOC (which is in principle an observable quantity) is often identified with the *thermohaline circulation* (THC),

Annex III Glossary

which is a conceptual and incomplete interpretation. It must be borne in mind that the MOC is also driven by wind, and can also include shallower overturning cells such as occur in the upper ocean in the tropics and subtropics, in which warm (light) waters moving poleward are transformed to slightly denser waters and *subducted* equatorward at deeper levels.

Metadata Information about meteorological and climatological data concerning how and when they were measured, their quality, known problems and other characteristics.

Methane (CH₄) Methane is one of the six *greenhouse gases* to be mitigated under the *Kyoto Protocol* and is the major component of natural gas and associated with all hydrocarbon fuels, animal husbandry and agriculture.

Metric A consistent measurement of a characteristic of an object or activity that is otherwise difficult to quantify. Within the context of the evaluation of *climate models*, this is a quantitative measure of agreement between a simulated and observed quantity which can be used to assess the performance of individual models.

Microwave Sounding Unit (MSU) A microwave sounder on National Oceanic and Atmospheric Administration (NOAA) polar orbiter satellites, that estimates the temperature of thick layers of the *atmosphere* by measuring the thermal emission of oxygen molecules from a complex of emission lines near 60 GHz. A series of nine MSUs began making this kind of measurement in late 1978. Beginning in mid 1998, a follow-on series of instruments, the Advanced Microwave Sounding Units (AMSUs), began operation.

Mineralization/Remineralization The conversion of an element from its organic form to an inorganic form as a result of microbial decomposition. In nitrogen mineralization, organic nitrogen from decaying plant and animal residues (proteins, nucleic acids, amino sugars and urea) is converted to ammonia (NH_3) and ammonium (NH_4^+) by biological activity.

Mitigation A human intervention to reduce the *sources* or enhance the *sinks* of *greenhouse gases*.

Mixing ratio See Mole fraction.

Model drift Since model *climate* differs to some extent from observed climate, *climate forecasts* will typically 'drift' from the initial observation-based state towards the model's climate. This drift occurs at different time scales for different variables, can obscure the initial-condition forecast information and is usually removed a posteriori by an empirical, usually linear, adjustment.

Model hierarchy See *Climate model (spectrum or hierarchy)*.

Model initialization A *climate forecast* typically proceeds by integrating a *climate model* forward in time from an initial state that is intended to reflect the actual state of the *climate system*. Available observations of the climate system are 'assimilated' into the model. Initialization is a complex process that is limited by available observations, observational errors and, depending on the procedure used, may be affected by *uncertainty* in the history of climate forcing. The initial conditions will contain errors that grow as the forecast progresses, thereby limiting the time for which the forecast will be useful. See also *Climate prediction*.

Model spread The range or spread in results from *climate models*, such as those assembled for Coupled Model Intercomparison Project Phase 5 (CMIP5). Does not necessarily provide an exhaustive and formal estimate of the *uncertainty* in *feedbacks*, forcing or *projections* even when expressed numerically, for example, by computing a standard deviation of the models' responses. In order to quantify uncertainty, information from observations, physical constraints and expert judgement must be combined, using a statistical framework.

Mode of climate variability Underlying space—time structure with preferred spatial pattern and temporal variation that helps account for the gross features in variance and for *teleconnections*. A mode of variability is often considered to be the product of a spatial *climate pattern* and an associated *climate index* time series.

Mole fraction Mole fraction, or *mixing ratio*, is the ratio of the number of moles of a constituent in a given volume to the total number of moles of all constituents in that volume. It is usually reported for dry air. Typical values for *well-mixed greenhouse gases* are in the order of μmol mol⁻¹ (parts per million: *ppm*), nmol mol⁻¹ (parts per billion: *ppb*), and fmol mol⁻¹ (parts per trillion: *ppt*). Mole fraction differs from *volume mixing ratio*, often expressed in ppmv etc., by the corrections for non-ideality of gases. This correction is significant relative to measurement precision for many greenhouse gases (Schwartz and Warneck, 1995).

Monsoon A monsoon is a tropical and subtropical seasonal reversal in both the surface winds and associated precipitation, caused by differential heating between a continental-scale land mass and the adjacent ocean. Monsoon rains occur mainly over land in summer.

Montreal Protocol The Montreal Protocol on Substances that Deplete the *Ozone Layer* was adopted in Montreal in 1987, and subsequently adjusted and amended in London (1990), Copenhagen (1992), Vienna (1995), Montreal (1997) and Beijing (1999). It controls the consumption and production of chlorine- and bromine-containing chemicals that destroy stratospheric *ozone*, such as chlorofluorocarbons, methyl chloroform, carbon tetrachloride and many others.

Near-surface permafrost A term frequently used in *climate model* applications to refer to *permafrost* at depths close to the ground surface (typically down to 3.5 m). In modelling studies, near-surface permafrost is usually diagnosed from 20 or 30 year climate averages, which is different from the conventional definition of permafrost. Disappearance of near-surface permafrost in a location does not preclude the longer-term persistence of permafrost at greater depth. See also *Active layer*, *Frozen ground* and *Thermokarst*.

Near-term climate forcers (NTCF) Near-term climate forcers (NTCF) refer to those compounds whose impact on *climate* occurs primarily within the first decade after their emission. This set of compounds is primarily composed of those with short *lifetimes* in the atmosphere compared to *well-mixed greenhouse gases*, and has been sometimes referred to as short lived climate forcers or short-lived climate pollutants. However, the common property that is of greatest interest to a climate assessment is the timescale over which their impact on climate is felt. This set of compounds includes *methane*, which is also a well-mixed greenhouse gas, as well as *ozone* and *aerosols*, or their *precursors*, and some halogenated species that are not well-mixed greenhouse gases. These compounds do not accumulate in the atmosphere at decadal to centennial timescales, and so their effect on climate is predominantly in the near term following their emission.

Nitrogen deposition Nitrogen deposition is defined as the nitrogen transferred from the *atmosphere* to the Earth's surface by the processes of wet deposition and dry deposition.

Nitrous oxide (N2O) One of the six *greenhouse gases* to be mitigated under the *Kyoto Protocol*. The main *anthropogenic source* of nitrous oxide is agriculture (soil and animal manure management), but important contributions also come from sewage treatment, combustion of fossil fuel, and chemical industrial processes. Nitrous oxide is also produced naturally from a wide variety of biological sources in soil and water, particularly microbial action in wet tropical *forests*.

Nonlinearity A process is called *nonlinear* when there is no simple proportional relation between cause and effect. The *climate system* contains many such nonlinear processes, resulting in a system with potentially very complex behaviour. Such complexity may lead to *abrupt climate change*. See also *Chaotic* and *Predictability*.

North Atlantic Oscillation (NAO) The North Atlantic Oscillation consists of opposing variations of surface pressure near Iceland and near the Azores. It therefore corresponds to fluctuations in the strength of the main westerly winds across the Atlantic into Europe, and thus to fluctuations in the embedded *extratropical cyclones* with their associated frontal systems. See NAO Index, Box 2.5.

Northern Annular Mode (NAM) A winter fluctuation in the amplitude of a pattern characterized by low surface pressure in the Arctic and strong mid-latitude westerlies. The NAM has links with the northern polar vortex into the *stratosphere*. Its pattern has a bias to the North Atlantic and its index has a large correlation with the *North Atlantic Oscillation* index. See NAM Index, Box 2.5.

Ocean acidification Ocean acidification refers to a reduction in the *pH* of the ocean over an extended period, typically decades or longer, which is caused primarily by *uptake* of *carbon dioxide* from the *atmosphere*, but can also be caused by other chemical additions or subtractions from the ocean. *Anthropogenic ocean acidification* refers to the component of pH reduction that is caused by human activity (IPCC, 2011, p. 37).

Ocean heat uptake efficiency This is a measure (W m⁻² °C⁻¹) of the rate at which heat storage by the global ocean increases as *global mean surface temperature* rises. It is a useful parameter for *climate change* experiments in which the *radiative forcing* is changing monotonically, when it can be compared with the *Climate Feedback Parameter* to gauge the relative importance of *climate response* and ocean heat *uptake* in determining the rate of climate change. It can be estimated from such an experiment as the ratio of the rate of increase of ocean heat content to the global mean surface air temperature change.

Organic aerosol Component of the *aerosol* that consists of organic compounds, mainly carbon, hydrogen, oxygen and lesser amounts of other elements. See also *Carbonaceous aerosol*.

Outgoing longwave radiation Net outgoing radiation in the infrared part of the spectrum at the top of the *atmosphere*. See also *Terrestrial radiation*.

Outlet glacier A *glacier*, usually between rock walls, that is part of, and drains an *ice sheet*. See also *Ice stream*.

Ozone Ozone, the triatomic form of oxygen (O_3) , is a gaseous atmospheric constituent. In the *troposphere*, it is created both naturally and by photochemical reactions involving gases resulting from human activities (*smog*). Tropospheric ozone acts as a *greenhouse gas*. In the *stratosphere*, it is created by the interaction between solar ultraviolet radiation and molecular oxygen (O_2) . Stratospheric ozone plays a dominant role in the stratospheric radiative balance. Its concentration is highest in the *ozone layer*.

Ozone hole See Ozone layer.

Ozone layer The *stratosphere* contains a layer in which the concentration of *ozone* is greatest, the so-called ozone layer. The layer extends from about 12 to 40 km above the Earth's surface. The ozone concentration reaches a maximum between about 20 and 25 km. This layer has been depleted by human emissions of chlorine and bromine compounds. Every year, during the Southern Hemisphere spring, a very strong depletion of the ozone layer takes place over the Antarctic, caused by *anthropogenic* chlorine and bromine compounds in combination with the specific meteorological conditions of that *region*. This phenomenon is called the *Ozone hole*. See also *Montreal Protocol*.

Pacific Decadal Oscillation (PDO) The pattern and time series of the first empirical orthogonal function of *sea surface temperature* over the North Pacific north of 20°N. The PDO broadened to cover the whole Pacific Basin is known as the Inter-decadal Pacific Oscillation. The PDO and IPO exhibit similar temporal evolution. See also *Pacific Decadal Variability*.

Pacific decadal variability Coupled decadal-to-inter-decadal variability of the atmospheric circulation and underlying ocean in the Pacific Basin. It is most prominent in the North Pacific, where fluctuations in the strength of the winter Aleutian Low pressure system co-vary with North Pacific *sea surface temperatures*, and are linked to decadal variations in atmospheric circulation, sea surface temperatures and ocean circulation throughout the whole Pacific Basin. Such fluctuations have the effect of modulating the *El Niño-Southern Oscillation* cycle. Key measures of Pacific decadal variability are the *North Pacific Index (NPI)*, the *Pacific Decadal Oscillation (PDO)* index and the *Inter-decadal Pacific Oscillation (IPO)* index, all defined in Box 2.5.

Pacific–North American (PNA) pattern An atmospheric large-scale wave pattern featuring a sequence of tropospheric high and low pressure anomalies stretching from the subtropical west Pacific to the east coast of North America. See PNA pattern index, Box 2.5.

Paleoclimate *Climate* during periods prior to the development of measuring instruments, including historic and geologic time, for which only *proxy* climate records are available.

Parameterization In *climate models*, this term refers to the technique of representing processes that cannot be explicitly resolved at the spatial or temporal *resolution* of the model (sub-grid scale processes) by relationships between model-resolved larger-scale variables and the area- or time-averaged effect of such subgrid scale processes.

Percentiles The set of partition values which divides the total population of a distribution into 100 equal parts, the 50th percentile corresponding to the *median* of the population.

Permafrost Ground (soil or rock and included ice and organic material) that remains at or below 0°C for at least two consecutive years. See also *Near-surface permafrost*.

pH pH is a dimensionless measure of the acidity of water (or any solution) given by its concentration of hydrogen ions (H⁺). pH is measured on a logarithmic scale where pH = $-\log_{10}(H^+)$. Thus, a pH decrease of 1 unit corresponds to a 10-fold increase in the concentration of H⁺, or acidity.

Photosynthesis The process by which plants take *carbon dioxide* from the air (or bicarbonate in water) to build carbohydrates, releasing oxygen in the process. There are several pathways of photosynthesis with different responses to atmospheric carbon dioxide concentrations. See also *Carbon dioxide fertilization*.

Plankton Microorganisms living in the upper layers of aquatic systems. A distinction is made between *phytoplankton*, which depend on *photosynthesis* for their energy supply, and *zooplankton*, which feed on phytoplankton.

Pleistocene The Pleistocene Epoch is the earlier of two epochs in the *Quaternary* System, extending from 2.59 Ma to the beginning of the *Holocene* at 11.65 ka.

Pliocene The Plionece Epoch is the last epoch of the *Neogene* System and extends from 5.33 Ma to the beginning of the *Pleistocene* at 2.59 Ma.

Pollen analysis A technique of both relative dating and environmental *reconstruction*, consisting of the identification and counting of pollen types preserved in peat, lake sediments and other deposits. See also *Proxy*.

Annex III Glossary

Precipitable water The total amount of atmospheric water vapour in a vertical column of unit cross-sectional area. It is commonly expressed in terms of the height of the water if completely condensed and collected in a vessel of the same unit cross section.

Precursors Atmospheric compounds that are not *greenhouse gases* or *aerosols*, but that have an effect on greenhouse gas or aerosol concentrations by taking part in physical or chemical processes regulating their production or destruction rates.

Predictability The extent to which future states of a system may be predicted based on knowledge of current and past states of the system. Because knowledge of the *climate system*'s past and current states is generally imperfect, as are the models that utilize this knowledge to produce a *climate prediction*, and because the climate system is inherently *nonlinear* and *chaotic*, predictability of the climate system is inherently limited. Even with arbitrarily accurate models and observations, there may still be limits to the predictability of such a nonlinear system (AMS, 2000).

Prediction quality/skill Measures of the success of a *prediction* against observationally based information. No single measure can summarize all aspects of forecast quality and a suite of *metrics* is considered. Metrics will differ for forecasts given in deterministic and probabilistic form. See also *Climate prediction*.

Pre-industrial See *Industrial Revolution*.

Probability Density Function (PDF) A probability density function is a function that indicates the relative chances of occurrence of different outcomes of a variable. The function integrates to unity over the domain for which it is defined and has the property that the integral over a subdomain equals the probability that the outcome of the variable lies within that sub-domain. For example, the probability that a temperature anomaly defined in a particular way is greater than zero is obtained from its PDF by integrating the PDF over all possible temperature anomalies greater than zero. Probability density functions that describe two or more variables simultaneously are similarly defined.

Process-based Model Theoretical concepts and computational methods that represent and simulate the behaviour of real-world systems derived from a set of functional components and their interactions with each other and the system environment, through physical and mechanistic processes occurring over time. See also *Climate model*.

Projection A projection is a potential future evolution of a quantity or set of quantities, often computed with the aid of a model. Unlike predictions, projections are conditional on assumptions concerning, for example, future socioeconomic and technological developments that may or may not be realized. See also *Climate prediction* and *Climate projection*.

Proxy A proxy *climate* indicator is a record that is interpreted, using physical and biophysical principles, to represent some combination of climate-related variations back in time. Climate-related data derived in this way are referred to as proxy data. Examples of proxies include *pollen analysis*, *tree ring* records, speleothems, characteristics of corals and various data derived from marine sediments and *ice cores*. Proxy-data can be calibrated to provide quantitative climate information.

Quasi-Biennal Oscillation (QBO) A near-periodic oscillation of the equatorial zonal wind between easterlies and westerlies in the tropical *stratosphere* with a mean period of around 28 months. The alternating wind maxima descend from the base of the mesosphere down to the *tropopause*, and are driven by wave energy that propagates up from the *troposphere*.

Quaternary The Quaternary System is the latter of three systems that make up the *Cenozoic Era* (65 Ma to present), extending from 2.59 Ma to the present, and includes the *Pleistocene* and *Holocene* epochs.

Radiative effect The impact on a radiation flux or heating rate (most commonly, on the downward flux at the top of *atmosphere*) caused by the interaction of a particular constituent with either the *infrared* or *solar radiation* fields through absorption, scattering and emission, relative to an otherwise identical atmosphere free of that constituent. This quantifies the impact of the constituent on the *climate system*. Examples include the *aerosol-radiation interactions*, *cloud radiative effect*, and *greenhouse effect*. In this report, the portion of any top-of-atmosphere radiative effect that is due to *anthropogenic* or other external influences (e.g., volcanic eruptions or changes in the sun) is termed the *instantaneous radiative forcing*.

Radiative forcing Radiative forcing is the change in the net, downward minus upward, radiative flux (expressed in W m⁻²) at the tropopause or top of atmosphere due to a change in an external driver of climate change, such as, for example, a change in the concentration of carbon dioxide or the output of the Sun. Sometimes internal drivers are still treated as forcings even though they result from the alteration in *climate*, for example aerosol or greenhouse gas changes in paleoclimates. The traditional radiative forcing is computed with all tropospheric properties held fixed at their unperturbed values, and after allowing for stratospheric temperatures, if perturbed, to readjust to radiative-dynamical equilibrium. Radiative forcing is called instantaneous if no change in stratospheric temperature is accounted for. The radiative forcing once rapid adjustments are accounted for is termed the effective radiative forcing. For the purposes of this report, radiative forcing is further defined as the change relative to the year 1750 and, unless otherwise noted, refers to a global and annual average value. Radiative forcing is not to be confused with cloud radiative forcing, which describes an unrelated measure of the impact of clouds on the radiative flux at the top of the atmosphere.

Rapid adjustment The response to an agent perturbing the *climate system* that is driven directly by the agent, independently of any change in the *global mean surface temperature*. For example, *carbon dioxide* and *aerosols*, by altering internal heating and cooling rates within the *atmosphere*, can each cause changes to cloud cover and other variables thereby producing a *radiative effect* even in the absence of any surface warming or cooling. Adjustments are *rapid* in the sense that they begin to occur right away, before *climate feedbacks* which are driven by warming (although some adjustments may still take significant time to proceed to completion, for example those involving vegetation or *ice sheets*). It is also called the *rapid response* or *fast adjustment*. For further explanation on the concept, see Sections 7.1 and 8.1.

Rapid climate change See Abrupt climate change.

Rapid dynamical change (of glaciers or ice sheets) Changes in *glacier* or *ice sheet* mass controlled by changes in flow speed and *discharge* rather than by *accumulation* or *ablation*. This can result in a rate of mass change larger than that due to any imbalance between accumulation and ablation. Rapid dynamical change may be initiated by a climatic trigger, such as incursion of warm ocean water beneath an *ice shelf*, or thinning of a grounded tidewater terminus, which may lead to reactions within the glacier system, that may result in rapid ice loss. See also *Mass balance/budget (of glaciers or ice sheets)*.

Reanalysis Reanalyses are estimates of historical atmospheric temperature and wind or oceanographic temperature and current, and other quantities, created by processing past meteorological or oceanographic data using fixed state-of-the-art weather forecasting or ocean circulation models with data assimilation techniques. Using fixed data assimilation avoids effects from the changing analysis system that occur in operational analyses. Although continuity is improved, global reanalyses still suffer from changing coverage and biases in the observing systems.

Rebound effect When CO_2 is removed from the *atmosphere*, the CO_2 concentration gradient between atmospheric and land/ocean carbon *reservoirs* is reduced. This leads to a reduction or reversal in subsequent inherent rate of removal of CO_2 from the atmosphere by natural *carbon cycle* processes on land and ocean.

Reconstruction (of climate variable) Approach to reconstructing the past temporal and spatial characteristics of a climate variable from predictors. The predictors can be instrumental data if the reconstruction is used to infill missing data or *proxy* data if it is used to develop *paleoclimate* reconstructions. Various techniques have been developed for this purpose: linear multivariate regression based methods and nonlinear *Bayesian* and analog methods.

Reforestation Planting of *forests* on lands that have previously contained forests but that have been converted to some other use. For a discussion of the term *forest* and related terms such as *afforestation*, *reforestation* and *deforestation*, see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

Region A region is a territory characterized by specific geographical and climatological features. The *climate* of a region is affected by regional and local scale features like topography, *land use* characteristics and lakes, as well as remote influences from other regions. See also *Teleconnection*.

Regional Climate Model (RCM) A *climate model* at higher *resolution* over a limited area. Such models are used in *downscaling* global *climate* results over specific regional domains.

Relative humidity The relative humidity specifies the ratio of actual water vapour pressure to that at saturation with respect to liquid water or ice at the same temperature. See also *Specific humidity*.

Relative sea level Sea level measured by a *tide gauge* with respect to the land upon which it is situated. See also *Mean sea level* and *Sea level change*.

Representative Concentration Pathways (RCPs) Scenarios that include time series of emissions and concentrations of the full suite of *greenhouse gases* and *aerosols* and chemically active gases, as well as *land usel* land cover (Moss et al., 2008). The word *representative* signifies that each RCP provides only one of many possible scenarios that would lead to the specific *radiative forcing* characteristics. The term *pathway* emphasizes that not only the long-term concentration levels are of interest, but also the trajectory taken over time to reach that outcome. (Moss et al., 2010).

RCPs usually refer to the portion of the concentration pathway extending up to 2100, for which Integrated Assessment Models produced corresponding *emission scenarios*. *Extended Concentration Pathways (ECPs)* describe extensions of the RCPs from 2100 to 2500 that were calculated using simple rules generated by stakeholder consultations, and do not represent fully consistent scenarios.

Four RCPs produced from Integrated Assessment Models were selected from the published literature and are used in the present IPCC Assessment as a basis for the *climate predictions* and *projections* presented in Chapters 11 to 14:

RCP2.6 One pathway where radiative forcing peaks at approximately 3 W m⁻² before 2100 and then declines (the corresponding ECP assuming constant emissions after 2100)

RCP4.5 and **RCP6.0** Two intermediate *stabilization pathways* in which radiative forcing is stabilized at approximately 4.5 W m $^{-2}$ and 6.0 W m $^{-2}$ after 2100 (the corresponding ECPs assuming constant concentrations after 2150)

RCP8.5 One high pathway for which radiative forcing reaches greater than 8.5 W m^{-2} by 2100 and continues to rise for some amount of time (the corresponding ECP assuming constant emissions after 2100 and constant concentrations after 2250)

For further description of future scenarios, see Box 1.1.

Reservoir A component of the *climate system*, other than the *atmosphere*, which has the capacity to store, accumulate or release a substance of concern, for example, carbon, a *greenhouse gas* or a *precursor*. Oceans, soils and *forests* are examples of reservoirs of carbon. *Pool* is an equivalent term (note that the definition of pool often includes the atmosphere). The absolute quantity of the substance of concern held within a reservoir at a specified time is called the *stock*.

Resolution In *climate models*, this term refers to the physical distance (metres or degrees) between each point on the grid used to compute the equations. *Temporal resolution* refers to the time step or time elapsed between each model computation of the equations.

Respiration The process whereby living organisms convert organic matter to *carbon dioxide*, releasing energy and consuming molecular oxygen.

Response time The response time or *adjustment time* is the time needed for the *climate system* or its components to re-equilibrate to a new state, following a forcing resulting from external processes. It is very different for various components of the climate system. The response time of the *troposphere* is relatively short, from days to weeks, whereas the *stratosphere* reaches equilibrium on a time scale of typically a few months. Due to their large heat capacity, the oceans have a much longer response time: typically decades, but up to centuries or millennia. The response time of the strongly coupled surface—troposphere system is, therefore, slow compared to that of the stratosphere, and mainly determined by the oceans. The *biosphere* may respond quickly (e.g., to *droughts*), but also very slowly to imposed changes. See *lifetime* for a different definition of response time pertinent to the rate of processes affecting the concentration of trace gases.

Return period An estimate of the average time interval between occurrences of an event (e.g., flood or extreme rainfall) of (or below/above) a defined size or intensity. See also *Return value*.

Return value The highest (or, alternatively, lowest) value of a given variable, on average occurring once in a given period of time (e.g., in 10 years). See also *Return period*.

River discharge See *Streamflow*.

Runoff That part of precipitation that does not evaporate and is not transpired, but flows through the ground or over the ground surface and returns to bodies of water. See also *Hydrological cycle*.

Scenario A plausible description of how the future may develop based on a coherent and internally consistent set of assumptions about key driving forces (e.g., rate of technological change, prices) and relationships. Note that scenarios are neither predictions nor forecasts, but are useful to provide a view of the implications of developments and actions. See also *Climate scenario*, *Emission scenario*, *Representative Concentration Pathways* and *SRES scenarios*.

Sea ice Ice found at the sea surface that has originated from the freezing of seawater. Sea ice may be discontinuous pieces (ice floes) moved on the ocean surface by wind and currents (pack ice), or a motionless sheet attached to the coast (land-fast ice). Sea ice concentration is the fraction of the ocean covered by ice. Sea ice less than one year old is called *first-year ice*. Perennial ice is sea ice that survives at least one summer. It may be subdivided into second-year ice and multi-year ice, where multiyear ice has survived at least two summers.

Annex III Glossary

Sea level change Sea level can change, both globally and locally due to (1) changes in the shape of the ocean basins, (2) a change in ocean volume as a result of a change in the mass of water in the ocean, and (3) changes in ocean volume as a result of changes in ocean water density. Global *mean sea level* change resulting from change in the mass of the ocean is called *barystatic*. The amount of barystatic sea level change due to the addition or removal of a mass of water is called its *sea level equivalent* (*SLE*). Sea level changes, both globally and locally, resulting from changes in water density are called *steric*. Density changes induced by temperature changes only are called *thermosteric*, while density changes induced by salinity changes are called *halosteric*. Barystatic and steric sea level changes do not include the effect of changes in the shape of ocean basins induced by the change in the ocean mass and its distribution. See also *Relative Sea Level* and *Thermal expansion*.

Sea level equivalent (SLE) The sea level equivalent of a mass of water (ice, liquid or vapour) is that mass, converted to a volume using a density of 1000 kg m $^{-3}$, and divided by the present-day ocean surface area of 3.625×10^{14} m 2 . Thus, 362.5 Gt of water mass added to the ocean will cause 1 mm of global *mean sea level* rise. See also *Sea level change*.

Seasonally frozen ground See *Frozen ground*.

Sea surface temperature (SST) The sea surface temperature is the subsurface bulk temperature in the top few metres of the ocean, measured by ships, buoys and drifters. From ships, measurements of water samples in buckets were mostly switched in the 1940s to samples from engine intake water. Satellite measurements of *skin temperature* (uppermost layer; a fraction of a millimetre thick) in the infrared or the top centimetre or so in the microwave are also used, but must be adjusted to be compatible with the bulk temperature.

Semi-direct (aerosol) effect See *Aerosol—radiation interaction*.

Semi-empirical model Model in which calculations are based on a combination of observed associations between variables and theoretical considerations relating variables through fundamental principles (e.g., conservation of energy). For example, in sea level studies, semi-empirical models refer specifically to transfer functions formulated to project future global *mean sea level change*, or contributions to it, from future *global mean surface temperature* change or *radiative forcing*.

Sensible heat flux The turbulent or conductive flux of heat from the Earth's surface to the *atmosphere* that is not associated with phase changes of water; a component of the surface *energy budget*.

Sequestration See *Uptake*.

Shortwave radiation See *Solar radiation*.

Significant wave height The average trough-to-crest height of the highest one third of the wave heights (sea and swell) occurring in a particular time period.

Sink Any process, activity or mechanism that removes a *greenhouse* gas, an aerosol or a *precursor* of a greenhouse gas or aerosol from the atmosphere.

Slab-ocean model A simplified representation in a *climate model* of the ocean as a motionless layer of water with a depth of 50 to 100 m. Climate models with a slab ocean can be used only for estimating the equilibrium response of *climate* to a given forcing, not the transient evolution of climate. See also *Equilibrium and transient climate experiment*.

Snow cover extent The areal extent of snow covered ground.

Snow water equivalent (SWE) The depth of liquid water that would result if a mass of snow melted completely.

Soil moisture Water stored in the soil in liquid or frozen form.

Soil temperature The temperature of the soil. This can be measured or modelled at multiple levels within the depth of the soil.

Solar activity General term describing a variety of magnetic phenomena on the Sun such as *sunspots*, *faculae* (bright areas), and flares (emission of high-energy particles). It varies on time scales from minutes to millions of years. See also *Solar cycle*.

Solar ('11-year') cycle A quasi-regular modulation of *solar activity* with varying amplitude and a period of between 8 and 14 years.

Solar radiation Electromagnetic radiation emitted by the Sun with a spectrum close to the one of a black body with a temperature of 5770 K. The radiation peaks in visible wavelengths. When compared to the *terrestrial radiation* it is often referred to as *shortwave radiation*. See also *Insolation* and *Total solar irradiance (TSI)*.

Solar Radiation Management (SRM) Solar Radiation Management refers to the intentional modification of the Earth's shortwave radiative budget with the aim to reduce *climate change* according to a given *metric* (e.g., *surface temperature*, precipitation, regional impacts, etc). Artificial injection of stratospheric *aerosols* and cloud brightening are two examples of SRM techniques. Methods to modify some fast-responding elements of the longwave radiative budget (such as cirrus clouds), although not strictly speaking SRM, can be related to SRM. SRM techniques do not fall within the usual definitions of *mitigation* and adaptation (IPCC, 2012, p. 2). See also *Solar radiation*, *Carbon Dioxide Removal (CDR)* and *Geoengineering*.

Solubility pump Solubility pump is an important physicochemical process that transports dissolved inorganic carbon from the ocean's surface to its interior. This process controls the inventory of carbon in the ocean. The solubility of gaseous *carbon dioxide* can alter carbon dioxide concentrations in the oceans and the overlying *atmosphere*. See also *Biological pump*.

Source Any process, activity or mechanism that releases a *greenhouse* gas, an aerosol or a precursor of a greenhouse gas or aerosol into the atmosphere.

Southern Annular Mode (SAM) The leading mode of variability of Southern Hemisphere geopotential height, which is associated with shifts in the latitude of the midlatitude jet. See SAM Index, Box 2.5.

Southern Oscillation See *El Niño-Southern Oscillation (ENSO)*.

South Pacific Convergence Zone (SPCZ) A band of low-level convergence, cloudiness and precipitation ranging from the west Pacific warm pool south-eastwards towards French Polynesia, which is one of the most significant features of subtropical Southern Hemisphere *climate*. It shares some characteristics with the *ITCZ*, but is more extratropical in nature, especially east of the Dateline.

Spatial and temporal scales *Climate* may vary on a large range of spatial and temporal scales. Spatial scales may range from local (less than 100 000 km²), through regional (100 000 to 10 million km²) to continental (10 to 100 million km²). Temporal scales may range from seasonal to geological (up to hundreds of millions of years).

Specific humidity The specific humidity specifies the ratio of the mass of water vapour to the total mass of moist air. See also *Relative humidity*.

SRES scenarios SRES scenarios are *emission scenarios* developed by Nakićenović and Swart (2000) and used, among others, as a basis for some of the *climate projections* shown in Chapters 9 to 11 of IPCC (2001) and Chapters 10 and 11 of IPCC (2007). The following terms are relevant for a better understanding of the structure and use of the set of SRES scenarios:

Scenario family Scenarios that have a similar demographic, societal, economic and technical change storyline. Four scenario families comprise the SRES scenario set: A1, A2, B1 and B2.

Illustrative Scenario A scenario that is illustrative for each of the six scenario groups reflected in the Summary for Policymakers of Nakićenović and Swart (2000). They include four revised *marker scenarios* for the scenario groups A1B, A2, B1, B2 and two additional scenarios for the A1FI and A1T groups. All scenario groups are equally sound.

Marker Scenario A scenario that was originally posted in draft form on the SRES website to represent a given scenario family. The choice of markers was based on which of the initial quantifications best reflected the storyline, and the features of specific models. Markers are no more likely than other scenarios, but are considered by the SRES writing team as illustrative of a particular storyline. They are included in revised form in Nakićenović and Swart (2000). These scenarios received the closest scrutiny of the entire writing team and via the SRES open process. Scenarios were also selected to illustrate the other two scenario groups.

Storyline A narrative description of a scenario (or family of scenarios), highlighting the main scenario characteristics, relationships between key driving forces and the dynamics of their evolution.

Steric See *Sea level change*.

Stock See *Reservoir*.

Storm surge The temporary increase, at a particular locality, in the height of the sea due to extreme meteorological conditions (low atmospheric pressure and/or strong winds). The storm surge is defined as being the excess above the level expected from the tidal variation alone at that time and place.

Storm tracks Originally, a term referring to the tracks of individual cyclonic weather systems, but now often generalized to refer to the main *regions* where the tracks of extratropical disturbances occur as sequences of low (cyclonic) and high (anticyclonic) pressure systems.

Stratosphere The highly stratified region of the *atmosphere* above the *troposphere* extending from about 10 km (ranging from 9 km at high latitudes to 16 km in the tropics on average) to about 50 km altitude.

Streamflow Water flow within a river channel, for example expressed in m^3 s⁻¹. A synonym for *river discharge*.

Subduction Ocean process in which surface waters enter the ocean interior from the surface mixed layer through *Ekman pumping* and lateral *advection*. The latter occurs when surface waters are advected to a region where the local surface layer is less dense and therefore must slide below the surface layer, usually with no change in density.

Sunspots Dark areas on the Sun where strong magnetic fields reduce the convection causing a temperature reduction of about 1500 K compared to the surrounding regions. The number of sunspots is higher during periods of higher *solar activity*, and varies in particular with the *solar cycle*.

Surface layer See *Atmospheric boundary layer*.

Surface temperature See *Global mean surface temperature*, *Land surface air temperature* and *Sea surface temperature*.

Talik A layer of year-round unfrozen ground that lies in *permafrost* areas.

Teleconnection A statistical association between climate variables at widely separated, geographically-fixed spatial locations. Teleconnections are caused by large spatial structures such as basin-wide coupled modes of ocean—atmosphere variability, Rossby wave-trains, mid-latitude jets and storm tracks, etc. See also *Teleconnection pattern*.

Teleconnection pattern A correlation map obtained by calculating the correlation between variables at different spatial locations and a *climate index*. It is the special case of a *climate pattern* obtained for stan-

dardized variables and a standardized climate index, that is, the variables and index are each centred and scaled to have zero mean and unit variance. One-point teleconnection maps are made by choosing a variable at one of the locations to be the climate index. See also *Teleconnection*.

Terrestrial radiation Radiation emitted by the Earth's surface, the *atmosphere* and the clouds. It is also known as *thermal infrared* or *long-wave radiation*, and is to be distinguished from the near-infrared radiation that is part of the solar spectrum. *Infrared radiation*, in general, has a distinctive range of wavelengths (*spectrum*) longer than the wavelength of the red light in the visible part of the spectrum. The spectrum of terrestrial radiation is almost entirely distinct from that of shortwave or *solar radiation* because of the difference in temperature between the Sun and the Earth—atmosphere system. See also *Outgoing longwave radiation*.

Thermal expansion In connection with sea level, this refers to the increase in volume (and decrease in density) that results from warming water. A warming of the ocean leads to an expansion of the ocean volume and hence an increase in sea level. See also *Sea level change*.

Thermocline The layer of maximum vertical temperature gradient in the ocean, lying between the surface ocean and the abyssal ocean. In subtropical regions, its source waters are typically surface waters at higher latitudes that have *subducted* (see *Subduction*) and moved equatorward. At high latitudes, it is sometimes absent, replaced by a *halocline*, which is a layer of maximum vertical salinity gradient.

Thermohaline circulation (THC) Large-scale circulation in the ocean that transforms low-density upper ocean waters to higher-density intermediate and deep waters and returns those waters back to the upper ocean. The circulation is asymmetric, with conversion to dense waters in restricted regions at high latitudes and the return to the surface involving slow upwelling and diffusive processes over much larger geographic regions. The THC is driven by high densities at or near the surface, caused by cold temperatures and/or high salinities, but despite its suggestive though common name, is also driven by mechanical forces such as wind and tides. Frequently, the name THC has been used synonymously with *Meridional Overturning Circulation*.

Thermokarst The process by which characteristic landforms result from the thawing of ice-rich *permafrost* or the melting of massive ground ice.

Thermosteric See Sea level change.

Tide gauge A device at a coastal or deep-sea location that continuously measures the level of the sea with respect to the adjacent land. Time averaging of the sea level so recorded gives the observed secular changes of the *relative sea level*.

Tipping point In *climate*, a hypothesized critical threshold when global or regional *climate changes* from one stable state to another stable state. The tipping point event may be irreversible. See also *Irreversibility*.

Total solar irradiance (TSI) The total amount of *solar radiation* in watts per square metre received outside the Earth's *atmosphere* on a surface normal to the incident radiation, and at the Earth's mean distance from the Sun.

Reliable measurements of solar radiation can only be made from space and the precise record extends back only to 1978. The generally accepted value is 1368 W m⁻² with an accuracy of about 0.2%. It has recently been estimated to 1360.8 \pm 0.5 W m⁻² for the solar minimum of 2008. Variations of a few tenths of a percent are common, usually associated with the passage of *sunspots* across the solar disk. The *solar cycle* variation of TSI is of the order of 0.1% (AMS, 2000). Changes in the ultraviolet part of the spectrum during a solar cycle are comparatively larger (percent) than in TSI. See also *Insolation*.

Annex III Glossary

Transient climate response See Climate sensitivity.

Transient climate response to cumulative CO₂ emissions (TCRE)

The transient global average *surface temperature* change per unit cumulated CO_2 emissions, usually 1000 PgC. TCRE combines both information on the *airborne fraction* of cumulated CO_2 emissions (the fraction of the total CO_2 emitted that remains in the *atmosphere*), and on the *transient climate response* (TCR).

Tree rings Concentric rings of secondary wood evident in a cross section of the stem of a woody plant. The difference between the dense, small-celled late wood of one season and the wide-celled early wood of the following spring enables the age of a tree to be estimated, and the ring widths or density can be related to climate parameters such as temperature and precipitation. See also *Proxy*.

Trend In this report, the word *trend* designates a change, generally monotonic in time, in the value of a variable.

Tropopause The boundary between the *troposphere* and the *strato-sphere*.

Troposphere The lowest part of the *atmosphere*, from the surface to about 10 km in altitude at mid-latitudes (ranging from 9 km at high latitudes to 16 km in the tropics on average), where clouds and weather phenomena occur. In the troposphere, temperatures generally decrease with height. See also *Stratosphere*.

Turnover time See Lifetime.

Uncertainty A state of incomplete knowledge that can result from a lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from imprecision in the data to ambiguously defined concepts or terminology, or uncertain *projections* of human behaviour. Uncertainty can therefore be represented by quantitative measures (e.g., a *probability density function*) or by qualitative statements (e.g., reflecting the judgment of a team of experts) (see Moss and Schneider, 2000; Manning et al., 2004; Mastrandrea et al., 2010). See also *Confidence* and *Likelihood*.

United Nations Framework Convention on Climate Change (UNFCCC) The Convention was adopted on 9 May 1992 in New York and signed at the 1992 Earth Summit in Rio de Janeiro by more than 150 countries and the European Community. Its ultimate objective is the 'stabilisation of *greenhouse gas* concentrations in the *atmosphere* at a level that would prevent dangerous *anthropogenic* interference with the *climate system*'. It contains commitments for all Parties. Under the Convention, Parties included in Annex I (all OECD countries and countries with economies in transition) aim to return greenhouse gas emissions not controlled by the *Montreal Protocol* to 1990 levels by the year 2000. The convention entered in force in March 1994. In 1997, the UNFCCC adopted the *Kyoto Protocol*.

Uptake The addition of a substance of concern to a *reservoir*. The uptake of carbon containing substances, in particular *carbon dioxide*, is often called (carbon) *sequestration*.

Urban heat island (UHI) The relative warmth of a city compared with surrounding rural areas, associated with changes in *runoff*, effects on heat retention, and changes in surface *albedo*.

Ventilation The exchange of ocean properties with the atmospheric *surface layer* such that property concentrations are brought closer to equilibrium values with the *atmosphere* (AMS, 2000), and the processes that propagate these properties into the ocean interior.

Volatile Organic Compounds (VOC) Important class of organic chemical air pollutants that are volatile at ambient air conditions. Other terms used to represent VOCs are *hydrocarbons* (HCs), *reactive organic gases* (ROGs) and *non-methane volatile organic compounds* (NMVOCs). NMVOCs are major contributors (together with NO_x and CO) to the formation of photochemical oxidants such as *ozone*.

Walker Circulation Direct thermally driven zonal overturning circulation in the *atmosphere* over the tropical Pacific Ocean, with rising air in the western and sinking air in the eastern Pacific.

Warm days/warm nights Days where maximum temperature, or nights where minimum temperature, exceeds the 90th *percentile*, where the respective temperature distributions are generally defined with respect to the 1961–1990 *reference* period. For the corresponding indices, see Box 2.4.

Warm spell A period of abnormally hot weather. For the corresponding indices, see Box 2.4. See also *Heat wave*.

Water cycle See *Hydrological cycle*.

Water mass A body of ocean water with identifiable properties (temperature, salinity, density, chemical tracers) resulting from its unique formation process. Water masses are often identified through a vertical or horizontal extremum of a property such as salinity. North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) are examples of water masses.

Weathering The gradual removal of atmospheric CO_2 through dissolution of silicate and carbonate rocks. Weathering may involve physical processes (*mechanical weathering*) or chemical activity (*chemical weathering*).

Well-mixed greenhouse gas See Greenhouse gas.

Younger Dryas A period 12.85 to 11.65 ka (thousand years before 1950), during the *deglaciation*, characterized by a temporary return to colder conditions in many locations, especially around the North Atlantic.

References

AMS, 2000: AMS Glossary of Meteorology, 2nd ed. American Meteorological Society, Boston, MA, http://amsglossary.allenpress.com/glossary/browse.

- Hegerl, G. C., O. Hoegh-Guldberg, G. Casassa, M. P. Hoerling, R. S. Kovats, C. Parmesan, D. W. Pierce, and P. A. Stott, 2010: Good practice guidance paper on detection and attribution related to anthropogenic climate change. In: *Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change* [T. F. Stocker, C. B. Field, D. Qin, V. Barros, G.-K. Plattner, M. Tignor, P. M. Midgley and K. L. Ebi (eds.)]. IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland.
- IPCC, 1992: Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment [J. T. Houghton, B. A. Callander and S. K. Varney (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 116 pp.
- IPCC, 1996: Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [J. T. Houghton., L. G. Meira . A. Callander, N. Harris, A. Kattenberg and K. Maskell (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 572 pp.
- IPCC, 2000: Land Use, Land-Use Change, and Forestry. Special Report of the Intergovernmental Panel on Climate Change [R. T. Watson, I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo, and D. J. Dokken (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 377 pp.
- IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [T. Houghton, Y. Ding, D. J. Griggs, M. Noquer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.
- IPCC, 2003: Definitions and Methodological Options to Inventory Emissions from Direct Human-Induced Degradation of Forests and Devegetation of Other Vegetation Types [Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe and F. Wagner (eds.)]. The Institute for Global Environmental Strategies (IGES), Japan, 32 pp.
- IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
- IPCC, 2011: Workshop Report of the Intergovernmental Panel on Climate Change Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems
 [C. B. Field, V. Barros, T. F. Stocker, D. Qin, K.J. Mach, G.-K. Plattner, M. D. Mastrandrea, M. Tignor and K. L. Ebi (eds.)]. IPCC Working Group II Technical Support Unit, Carnegie Institution, Stanford, CA, USA, 164 pp.
- IPCC, 2012: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Geoengineering [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, C. Field, V. Barros, T. F. Stocker, Q. Dahe, J. Minx, K. Mach, G.-K. Plattner, S. Schlömer, G. Hansen and M. Mastrandrea (eds.)]. IPCC Working Group III Technical Support Unit, Potsdam Institute for Climate Impact Research, Potsdam, Germany, 99 pp.
- Manning, M., et al., 2004: IPCC Workshop on Describing Scientific Uncertainties in Climate Change to Support Analysis of Risk of Options. Workshop Report. IPCC Working Group I Technical Support Unit, Boulder, CO, USA, 138 pp.
- Mastrandrea, M. D., C. B. Field, T. F. Stocker, O. Edenhofer, K. L. Ebi, D. J. Frame, H. Held, E. Kriegler, K. J. Mach, P. R. Matschoss, G.-K. Plattner, G. W. Yohe, and F. W. Zwiers, 2010: Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Intergovernmental Panel on Climate Change (IPCC). http://www.ipcc.ch.
- Moss, R., and S. Schneider, 2000: Uncertainties in the IPCC TAR: Recommendations to Lead Authors for More Consistent Assessment and Reporting. In: IPCC Supporting Material: Guidance Papers on Cross Cutting Issues in the Third Assessment Report of the IPCC. [Pachauri, R., T. Taniguchi, and K. Tanaka (eds.)]. Intergovernmental Panel on Climate Change, Geneva, pp. 33–51.
- Moss, R., et al., 2008: Towards new scenarios for analysis of emissions, climate change, impacts and response strategies. Intergovernmental Panel on Climate Change, Geneva, 132 pp.
- Moss, R. et al., 2010: The next generation of scenarios for climate change research and assessment. *Nature*, **463**, 747–756.

Nakićenović, N., and R. Swart (eds.), 2000: Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599 pp.

Schwartz, S.E., and P. Warneck, 1995: Units for use in atmospheric chemistry. Pure Appl. Chem., 67, 1377–1406.

AIV

Annex IV: Acronyms

This annex should be cited as:

IPCC, 2013: Annex IV: Acronyms. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

μmol	Micromole	ARFI	Aerosol Radiative Forcing over India
20C3M	20th Century Climate in Coupled Models	ari	Aerosol–Radiation Interactions
AABW	Antarctic Bottom Water	ARM	Atmospheric Radiation Measurement
AAIW	Antarctic Intermediate Water	ARTIST	Arctic Radiation and Turbulence Interaction Study
AAO	Antarctic Oscillation	ATL3	Atlantic 3
AATSR	Advanced Along Track Scanning Radiometer	ATSR	Along Track Scanning Radiometer
ABA	AMSR Bootstrap Algorithm	AUSMC	Australian-Maritime Continent
ACC	Antarctic Circumpolar Current	AVHRR	Advanced Very High Resolution Radiometer
ACCENT	Atmospheric Composition Change: a European Network	AVISO	Archiving, Validation and Interpretation of Satellite Oceanographic Data
aci	Aerosol–Cloud Interactions	BATS	Bermuda Atlantic Time Series Study
ACRIM	Active Cavity Radiometer Irradiance Monitor	ВС	Black Carbon
ACW	Antarctic Circumpolar Wave	ВСС	Beijing Climate Center
AeroCom	Aerosol Model Intercomparison	BCC-CSM	Beijing Climate Center-Climate System Model
AERONET	Aerosol Robotic Network	BDC	Brewer–Dobson Circulation
A-FORCE	Aerosol Radiative Forcing in East Asia	BECCS	Bio-Energy with Carbon-Capture and Storage
	Aircraft Campaign	BMI	Basin Mean Index
AGAGE	Advanced Global Atmospheric Gases Experiment	BNF	Biological Nitrogen Fixation
AGCM	Atmospheric General Circulation Model	ВОМ	Bureau of Meteorology
AGTP	Absolute Global Temperature Change Potential	C ₂ Cl ₄	Tetrachloroethene
AGWP	Absolute Global Warming Potential	C ⁴ MIP	Coupled Climate Carbon Cycle Model
AIC	Aircraft-Induced Cirrus		Intercomparison Project
ALOHA	A Long-term Oligotrophic Habitat Assessment	CaCO ₃	Calcium Carbonate
AMIP	Atmospheric Model Intercomparison Project	CALIOP	Cloud-Aerosol Lidar with Orthogonal Polarization
AMM	Atlantic Meridional Mode	CALIPSO	Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
AMO	Atlantic Multi-decadal Oscillation	CAM	
AMOC	Atlantic Meridional Overturning Circulation	CAMS	Community Atmosphere Model
AMSR	Advanced Microwave Scanning Radiometer		Climate Anomaly Monitoring System
AMSU	Advanced Microwave Sounding Unit	CanESM CASTNET	Canadian Earth System Model
AMV	Atlantic Multi-decadal Variability		Clean Air Status and Trends Network
AO	Arctic Oscillation	CCCma	Canadian Centre for Climate Modelling and Analysis
AOD	Aerosol Optical Depth	CCI ₄	Carbon Tetrachloride
AOGCM	Atmosphere-Ocean General Circulation Model	CCM	Chemistry–Climate Model
APHRODITE	Asian Precipitation – Highly Resolved Observational Data Integration Towards Evaluation	CCMVal	Chemistry–Climate Model Validation
AR4	IPCC Fourth Assessment Report	CCN	Cloud Condensation Nuclei
ARCPAC	Aerosol, Radiation, and Cloud Processes	CCR	Carbon Climate Response
4.0.004.5	affecting Arctic Climate Arctic Research of the Composition of the Troposphere from Aircraft and Satellites	CCSM	Community Climate System Model
ARCTAS		CCSR	Centre for Climate System Research
		CDD	Consecutive Dry Days

Acronyms Annex IV

CDIAC	Carbon Dioxide Information Analysis Center	COCO	CCSR Ocean Component Model
CDR	Carbon Dioxide Removal	СОСО	Cooperative Holocene Mapping Project
CDW	Circumpolar Deep Water	CORE	Coordinated Ocean-ice Reference Experiments
CE	Common Era	COWCLIP	Coordinated Ocean Wave Climate Project
CERES	Cloud and the Earth's Radiant Energy System	COWL	Cold Ocean/Warm Land
CESM		CPC	
	Community Earth System Model		Climate Prediction Center (NOAA)
CESM1–BGC	Community Earth System Model 1– Biogeochemical	CPR CRE	Cloud Profiling Radar Cloud Radiative Effect
CF ₄	Perfluoromethane	CRU	Climatic Research Unit
CFC	Chlorofluorocarbon	CRUTEM4	Climatic Research Unit Gridded Dataset of
CFC-11	Trichlorofluoromethane (CFCl ₃)	CROTLINIA	Global Historical Near-Surface Air TEMperature
CFC-113	Trichlorotrifluoroethane (CF ₂ CICFCI ₂)		Anomalies Over Land Version 4
CFC-12	Dichlorodifluoromethane (CF ₂ Cl ₂)	CS	Complex Ocean Sediment Model
CFMIP	Cloud Feedback Model Intercomparison Project	CSFR	Climate Forecast System Reanalysis
CFSRR	Climate Forecast System Reanalysis and Reforecast	CSIRO	Commonwealth Scientific and Industrial Research Organisation
CGCM	Coupled General Circulation Model	CWC	Cumulative Warming Commitment
CH ₂ Cl ₂	Dichloromethane	DCESS	Danish Center for Earth System Science
CH₃Br	Bromomethane	DIC	Dissolved Inorganic Carbon
CH ₃ CCl ₃	Methyl Chloroform	DJF	December, January and February
CH ₃ Cl	Chloromethane	DMI	Directional Movement Index
CH ₄	Methane	DMS	Dimethyl Sulphide
CLIMAP	Climate: Long-range Investigation, Mapping,	DO	Dissolved Oxygen; also Dansgaard-Oeschger
	and Prediction		Dissolved Organic Carbon
CLIMBER-2	Climate and Biosphere Model	DOE	Department of Energy
CLIO	Coupled Large-scale Ice-Ocean Model	DTR	Diurnal Temperature Range
CLM4C	Community Land Model for Carbon	DU	Dobson Units
CLM4CN	Community Land Model for Carbon–Nitrogen	EAS	East Asian Summer
CMAP	CPC Merged Analysis of Precipitation	EASM	East Asian Summer Monsoon
CMDL	Climate Monitoring and Diagnostics Laboratory	EBC	Equivalent Black Carbon
	(NOAA)	EBM	Energy Balance Model
CMIP3	Coupled Model Intercomparison Project Phase 3	ECBILT	Coupled Atmosphere Ocean Model from de Bilt
CMIP5	Coupled Model Intercomparison Project Phase 5	ECHAM	ECMWF and Hamburg
CNRM	Centre National de Recherches Météorologiques	ECHO-G	ECHAM4+HOPE-G
CO	Carbon Monoxide	ECMWF	European Centre for Medium Range
CO ₂	Carbon Dioxide		Weather Forecasts
CO ₃ ²⁻	Carbonate	ECS	Equilibrium Climate Sensitivity
COADS	Comprehensive Ocean–Atmosphere Data Set	EDGAR	Emission Database for Global Atmospheric Research
COBE-SST	Centennial in situ Observation-Based Estimates of Sea Surface Temperature	EMIC	Earth System Model of Intermediate Complexity

ENSO	El Niño-Southern Oscillation	GHCNDEX	Global Historical Climatology Network-Daily Gridded Data Set of Climate Extremes	
EOF	Empirical Orthogonal Function	GHCNv3	Global Historical Climatology Network Version 3	
ERA-40	ECMWF 40-year ReAnalysis	GHG	Greenhouse Gas	
ERBE	Earth Radiation Budget Experiment	GI	Greenland Interstadial	
ERBS	Earth Radiation Budget Satellite	GIA	Glacial Isostatic Adjustment	
ERF	Effective Radiative Forcing	GIS	Greenland Ice Sheet	
ERFaci	Effective Radiative Forcing due to Aerosol– Cloud Interactions	GISP	Greenland Ice Sheet Project	
ERFari	Effective Radiative Forcing due to Aerosol–	GISS	Goddard Institute of Space Studies	
	Radiation Interactions	GISTEMP	Goddard Institute for Space Studies Surface	
ERS	European Remote Sensing (Satellite)		Temperature Analysis	
ERSST	Extended Reconstructed Sea Surface Temperature	GL	Grounding Line	
ESA	European Space Agency	GLODAP	Global Ocean Data Analysis Project	
ESM	Earth System Model	GLS	Generalized Least Squares	
ESMR	Electrically Scanning Microwave Radiometer	GMA	Global Monsoon Area	
ESRL	Earth System Research Library (NOAA)	GMD	Global Monitoring Division (NOAA)	
ESTOC	European Station for Time Series in the Ocean	GMI	Global Monsoon Precipitation Intensity	
ETC	Extratropical Cyclone	GMP	Global Monsoon Total Precipitation	
FACE	Free-Air CO ₂ Enrichment	GMSL	Global Mean Sea Level	
FAO	Food and Agriculture Organization (UN)	GMST	Global Mean Surface Temperature	
FAR	IPCC First Assessment Report	GOCCP	GCM-Oriented CALIPSO Cloud Product	
FGOALS1	Flexible Global Ocean Atmosphere Land	GOGA	Global Ocean Global Atmosphere	
	System Model Version 1	GOME	Global Ozone Monitoring Experiment	
FIO	First Institute of Oceanography	GOMOS	Global Ozone Monitoring by Occultation of Stars	
FLUXNET	Global Network of Flux Towers	GOSAT	Greenhouse Gases Observing Satellite	
FTIR	Fourier Transform Infrared Spectroscopy	GPCC	Global Precipitation Climatology Centre	
FTS	Fourier-Transform Spectrometer	GPCP	Global Precipitation Climatology Project	
FWCC	Freshwater Content Changes	GPH	Geopotential Height	
GCAM	Global Change Assessment Model	GPP	Gross Primary Productivity	
GCM	General Circulation Model	GPS	Global Positioning System	
GCP	Global Cost Potential	GRACE	Gravity Recovery and Climate Experiment	
GCRM	Global Cloud-Resolving Models	GRISLI	Grenoble Ice Shelf and Land Ice Model	
GEISA	Gestion et Etude des Informations Spectroscopiques Atmosphériques	GS	Greenland Stadial	
GENIE-1	Grid Enabled Integrated Earth System Model-1	GSFC	Goddard Space Flight Centre	
GeoMIP G1	Geoengineering Model Intercomparison	Gt	Gigatonnes	
	Project G1	GTP	Global Temperature Change Potential	
GFDL	Geophysical Fluid Dynamics Laboratory	GUESS	General Ecosystem Simulator	
GFED	Global Fire Emissions Database	GWD	Gravity-Wave Drag	
GHCN	Global Historical Climatology Network	GWP	Global Warming Potential	

Acronyms Annex IV

HadAT2	Hadley Centre Atmospheric Temperature Data Set 2	IMBIE	Ice-sheet Mass Balance Intercomparison Experiment
HadCM	Hadley Centre Climate Prediction Models	IMPROVE	US Interagency Monitoring of Protected Visual
HadCRUT4	Hadley Centre Climatic Research Unit Gridded Surface Temperature Data Set 4	INMCM4	Environments Institute for Numerical Mathematics
HadEX	Hadley Centre Gridded Data Set Of Temperature And Precipitation Extremes	IOB	Coupled Model 4 Indian Ocean Basin
HadGEM1	Hadley Centre New Global Environmental	IOBM	Indian Ocean Basin Mode
Haudewii	Model 1	IOD	Indian Ocean Dipole
HadGEM2-ES	Hadley Centre New Global Environmental Model 2-Earth System	IODM	Indian Ocean Dipole Mode
HadGHCND	Hadley Centre Gridded Daily Temperatures	IPA	International Permafrost Association
	Data Set	IPO	Inter-decadal Pacific Oscillation
HadISST	Hadley Centre Interpolated SST	IPSL	Institut Pierre Simon Laplace
HadNMAT2	Hadley Centre Night Marine Air Temperatures	IPY	International Polar Year
u laine	Data Set Version 2	IR	Infrared
HadSLP2r	Hadley Centre Sea Level Pressure Data Set 2r	IRF	Impulse Response Function
HadSST3	Hadley Centre Sea Surface Temperature Data Set Version 3	ISCCP	International Satellite Cloud Climatology Project
HALOE	Halogen Occultation Experiment	ITCZ	Inter-Tropical Convergence Zone
HCFC	Hydrochlorofluorocarbon	ITF	Indonesian Throughflow
HCO ₃ -	Bicarbonate Ion	IUK	Iterative Universal Kriging
HF	Hickey–Frieden (Radiometer)	JIMAR	Joint Institute for Marine and Atmospheric Research
HFC	Hydrofluorocarbon	JJA	June, July and August
HIPPO	HIAPER Pole-to-Pole Observations	JMA	Japan Meteorological Agency
HIRHAM5	High-Resolution Hamburg Climate Model 5	JPL	Jet Propulsion Laboratory
HITRAN	High-Resolution Transmission Molecular Absorption	ka	1000 Years ago
HOAPS	Hamburg Ocean–Atmosphere Parameters and	KCM	Knowledge Capture and Modeling
	Fluxes from Satellite	kyr	1000 Years
НОТ	Hawaii Ocean Time Series	LAC	Light-Absorbing Carbon
HYDE	History Database of the Environment	LBIS	Larsen B Ice Shelf
HY-INT	Hydroclimatic Intensity	LBL	Line-by-line (models)
HYLAND	Hybrid Land Terrestrial Ecosystem Model	LGM	Last Glacial Maximum
IAM	Integrated Assessment Model	LIA	Little Ice Age
IASI	Infrared Atmospheric Sounder Interferometer	LIG	Last Interglacial
ICE	Ice Cloud and Land Elevation	LISAM	Large–scale Index for South America Monsoon
ICESat	Ice, Cloud and Land Elevation Satellite	LLGHG	Long-Lived Greenhouse Gas
ICOADS	International Comprehensive Ocean-Atmosphere	LMM	Late Maunder Minimum
	Data Set	LNADW	Lower North Atlantic Deep Water
IGAC	International Global Atmospheric Chemistry	LOSU	Level of Scientific Understanding
IMAGE	Integrated Model to Assess the Global Environment	LOVECLIM	Loch–Vecode-Ecbilt-Clio-Agism Model

LPB	La Plata Basin	MLOST	Merged Land–Ocean Surface Temperature
LPJ	Lund-Potsdam-Jena Dynamic Global Model	MEOSI	(Analysis)
LRF	Long-Range Forecast	MLS	Microwave Limb Sounder
LS	Lower Stratosphere	MME	Multi-Model Ensemble
LSAT	Land-Surface Air Temperature	MMF	Multiscale Modelling Framework
LSW	Labrador Sea Water	MMM	Multi-Model Mean
LUC	Land Use and Climate	MMTS	Maximum–Minimum Temperature Systems
LUCID	Land Use and Climate, Identification of	МОС	Meridional Overturning Circulation
100.0	Robust Impacts	MOCAGE	Modèle de Chimie Atmosphérique à Grande Echelle
LULC	Land Use and Land Cover	MODIS	Moderate Resolution Imaging Spectrometer
LULCC	Land Use and Land Cover Change		
LWCRE	Longwave Cloud Radiative Effect	MOHC	Met Office Hadley Centre
LWR	Longwave Radiation	MOPITT	Measurements of Pollutants in the Troposphere
MAGICC	Model for the Assessment of Greenhouse	MPI	Max Planck Institute
	Gas Induced Climate Change	MPIOM	Max Planck Institute Ocean Model
MAM	March, April and May	MPWP	Mid-Pliocene Warm Period
MAR MARGO	Modèle Atmosphérique Régional Multiproxy Approach for the Reconstruction	MRI	Meteorological Research Institute of Japan Meteorological Agency
	of the Glacial Ocean Surface	MSL	Mean Sea Level
MAT	Marine Air Temperatures	MSSS	Mean Square Skill Score
MBT	Mechanical Bathythermograph	MSU	Microwave Sounding Unit
MCA	Medieval Climate Anomaly	Mt	Megatonnes
MDA	Mineral Dust Aerosol	MT	Mid-Tropospheric
MDT	Mean Dynamic Topography	MTCO	Mean Temperature of the Coldest Month
MEA	Millennium Ecosystem Assessment	MTWA	Mean Temperature of the Warmest Month
MERRA	Modern Era Reanalysis for Research	MW	Microwave
	and Applications	MXD	Maximum Latewood Density
MESSAGE	Model for Energy Supply Strategy Alternatives and their General Environmental Impact	Ма	Million Years ago
MFR	Maximum Feasible Reduction	Myr	Million Years
MHD	Mace Head	N_2O	Nitrous Oxide
MIP	Model Intercomparison Project	NADW	North Atlantic Deep Water
MIPAS	Michelson Interferometer for Passive	NAM	Northern Annular Mode
WIIAS	Atmospheric Sounding	NAMP	National Air Quality Monitoring Programme (India)
MIROC	Model for Interdisciplinary Research on Climate	NAMS	North American Monsoon System
MISI	Marine Ice Sheet Instability	NAO	North Atlantic Oscillation
MISR	Multi-angle Imaging Spectro-Radiometer		
MIT	Massachusetts Institute of Technology	NASA	National Aeronautics and Space Administration
MJO	Madden–Julian Oscillation	NCAR	National Center for Atmospheric Research
MLD	Mixed Layer Depth	NCEP	National Centers for Environmental Prediction
		NEC	North Equatorial Current

Acronyms Annex IV

NEEM	North Greenland Eemian Ice Drilling	OLS	Ordinary Least Squares
NEWS	Global Nutrient Export from WaterSheds	OMI	Ozone Monitoring Instrument
NF ₃	Nitrogen Trifluoride	ONDJFM	October, November, December, January,
NGRIP	North Greenland Ice Core Project		February and March
NH	Northern Hemisphere	ORC	Oceanic Reservoir Correction
NIWA	National Institute of Water and	PAGES 2k	Past Global Changes 2k
	Atmospheric Research	PARASOL	Polarization and Anisotropy of Reflectances for
NMAT	Nighttime Marine Air Temperature		Atmospheric Sciences Coupled with Observations from Lidar
NMVOC	Non-Methane Volatile Organic Compound	PATMOS-x	Pathfinder Atmospheres Extended Data Set
NNR	NCEP-NCAR	PBAPs	Primary Biological Aerosol Particles
NOAA	National Oceanic and Atmospheric Administration	PCM	Parallel Climate Model
NODC	National Oceanic Data Center	pCO ₂	Partial Pressure of Carbon Dioxide
NorESM	Norwegian Earth System Model	PDF	Probability Density Function
NO_x	Reactive Nitrogen Oxides (the Sum	PDO	Pacific Decadal Oscillation
NDI	of NO and NO ₂)	PDSI	Palmer Drought Severity Index
NPI NPIW	North Pacific Index North Pacific Intermediate Water	PETM	Paleocene–Eocene Thermal Maximum
NPP	Net Primary Productivity	PFC	Perfluorocarbon
NSIDC	National Snow and Ice Data Center	PG	Peripheral Glacier
NT1	National Aeronautics and Space Administration	Pg	Petagram
	(NASA) Team Algorithm, Version 1	PM ₁₀	Particulate Matter with Aerodynamic Diameter <10 μm
NT2	National Aeronautics and Space Administration (NASA) Team Algorithm, Version 2	PM _{2.5}	Particulate Matter with Aerodynamic
NTCF	Near-Term Climate Forcer	DATE	Diameter <2.5 μm
O(1D)	Oxygen Radical in the 1D Excited State	PMEL	Pacific Marine Environmental Laboratory
03	Ozone	PMIP3	Paleoclimate Modelling Intercomparison Project Phase III
OA	Ocean-Atmosphere; also Other Anthropogenic (Forcings)	PMOD	Physikalisch-Meteorologisches Observatorium Davos
OAC	Ocean–Atmosphere–Carbon Cycle	PNA	Pacific–North American (Pattern)
OAFlux	Objectively Analyzed Air–Sea Heat Fluxes	POA	Primary Organic Aerosol
OAGCMs	Ocean–Atmosphere General Circulation Models	POC	Particulate Organic Carbon
OAV	Ocean–Atmosphere–Vegetation	POLDER	Polarization and Directionality of the
OC	Organic Carbon		Earth's Reflectance
OCN	Oceanic Carbon and Nutrient Cycling (Model)	PPE	Perturbed-Parameter Ensemble
ODP	Ocean Drilling Program	PRCE	Peak Response to Cumulative Emissions
ODS	Ozone-Depleting Substance	PREMOS	Precision Monitor Sensor
ОН	Hydroxyl Radical	PSA	Pacific—South American (Pattern)
ОНС	Ocean Heat Content	PSMSL	Permanent Service for Mean Sea Level
OHR	Ocean Heating Rate	PSS	Practical Salinity Scale
OLR	Outgoing Longwave Radiation	PSS78	Practical Salinity Scale 1978

PUCCINI	Physical Understanding of Composition-Climate	SBA	SSM/I Bootstrap Algorithm
000	Interactions and Impacts	SBUV	Solar Backscatter Ultraviolet
QBO	Quasi-Biennial Oscillation	SC	Solar Cycle
R95p (R99p)	Amount of Precipitation from Days >95th (99th) Percentile	SCA	Snow-Covered Area
RACMO2	Regional Atmospheric Climate Model 2	SCD	Snow Cover Duration
RAOBCORE	Radiosone Observation Correction using	SCE	Snow Cover Extent
	Reanalyses	SCIA	Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
RAPID/MOCH	Rapid Climate Change-Meridional Overturning Circulation and Heatflux Array	SCIAMACHY	Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
RATPAC	Radiosonde Atmospheric Temperature Products for Assessing Climate	SD	Snow Depth; also Statistical Downscaling
DCM	•		•
RCM	Regional Climate Model	SDGVM	Sheffield Dynamic Global Vegetation Model
RCP	Representative Concentration Pathway	SDII	Simple Daily Precipitation Intensity Index
RE	Radiative Efficiency	SeaWiFS	Sea-viewing Wide Field-of-view Sensor
REMBO	Regional, Moisture-Balance Orographic Model	SEM	Semi-Empirical Model
REML	Restricted Maximum Likelihood	SF ₆	Sulphur Hexafluoride
RF	Radiative Forcing	SH	Southern Hemisphere
RFaci	Radiative Forcing from Aerosol–Cloud Interactions	SICOPOLIS	Simulation Code for Polythermal Ice Sheets
RGI	Randolph Glacier Inventory	SIM	Spectral Irradiance Monitor
RH	Relative Humidity	SIO	Scripps Institution of Oceanography
RICH	Radiosonde Innovation Composite	SLE	Sea Level Equivalent
	Homogenization	SLP	Sea Level Pressure
RMIB	Royal Meteorological Institute of Belgium	SLR	Sea Level Rise
RMS	Root Mean Square	SMB	Surface Mass Balance
RMSE	Root Mean Square Error	SMMR	Scanning Multichannel Microwave Radiometer
RO	Radio Occultation	SMOS	Soil Moisture and Ocean Salinity
RSCA	Relative Snow-Covered Area	SNO	Simultaneous Nadir Overpass
RSL	Relative Sea Level	SO ₂	Sulphur Dioxide
RSS	Remote Sensing System	SO ₂ F ₂	Sulphuryl Fluoride
RX5day/RX1d	day Annual Maximum 5-Day/1-Day Precipitation	SO ₄ 2-	Sulfate
S/N	Signal-to-Noise (Ratio)	SOA	Secondary Organic Aerosol
SACZ	South Atlantic Convergence Zone	SOI	Southern Oscillation Index
SAGE	Stratospheric Aerosol and Gas Experiment or	SOLSTICE	Solar Stellar Irradiance Comparison Experiment
	Centre for Sustainability and the Global Environment	SON	September, October and November
SAM	Southern Annular Mode	SORCE	Solar Radiation and Climate Experiment
SAMS	South American Monsoon System	SPARC	Stratospheric Processes and their Role in Climate
SAMW	Sub-Antarctic Mode Water		Chemistry Climate Model Validation
SAR	IPCC Second Assessment Report	SPCZ	South Pacific Convergence Zone
CAT	C (A) T		

SAT

Surface Air Temperature

Acronyms Annex IV TOPEX SPEI Standardised Precipitation Evapotranspiration Topography Experiment Index **TRANSCOM** Atmospheric Tracer Transport Model SPI Standardised Precipitation Index Intercomparison Project **SPRINTARS** Spectral Radiation-Transport Model for **TRIFFID** Top-down Representation of Interactive Foliage Aerosol Species and Flora Including Dynamics **SRALT** Satellite Radar Altimetry **TRUTHS** Traceable Radiometry Underpinning Terrestrial and Helio Studies **SRES IPCC Special Report on Emission Scenarios TRW** Tree-Ring Width **SREX** IPCC Special Report on Managing the Risk of Extreme Events and Disasters to Advance Climate TSI **Total Solar Irradiance Change Adaptation** TTD Transit Time Distribution SRM Solar Radiation Management TW Tidewater SSH Sea Surface Height UAH University of Alabama in Huntsville SSI Spectral Solar Irradiance **UARS** Upper Atmosphere Research Satellite SSM/I Special Sensor Microwave/Imager UCI University of California, Irvine SSR **Surface Solar Radiation** UHI **Urban Heat Island** SSS Sea Surface Salinity **UNADW** Upper North Atlantic Deep Water SST Sea Surface Temperature **UNEP** United Nations Environment Programme SSU Stratospheric Sounding Unit **UOHC** Upper (0-700 m) Ocean Heat Content **STAR** Center for Satellite Applications and Research **USHCN** US Historical Climatology Network **STMW** Subtropical Mode Water **UTLS** Upper Troposphere/Lower Stratosphere **SVS** Standard Verification System (WMO) UV Ultraviolet **SWCRE** Shortwave Cloud Radiative Effect UVic University of Victoria **SWE** Snow Water Equivalent VasClimO Variability Analyses of Surface Climate **SWH** Observations Significant Wave Height **SWR** Solar Shortwave Radiation **VEGAS** Terrestrial Vegetation and Carbon Model TBO **VIIRS Tropospheric Biennial Oscillation** Visible Infrared Imaging Radiometer Suite Tg **Teragrams VLM** Vertical Land Motion T/P TOPEX/Poseidon VOC Volatile Organic Compound Thermal and Near Infrared Sensor for VOS **TANSO** Voluntary Observing Ship Carbon Observation W Watts **TAR IPCC Third Assessment Report** WAIS West Antarctic Ice Sheet TC Tropical Cyclone; also Total Carbon **WASWind** Wave- and Anemometer-Based Sea Surface Wind **TCCON** Total Carbon Column Observing Network **WCRP** World Climate Research Programme TCR **Transient Climate Response** WMGHG Well-Mixed Greenhouse Gas **TCRE** Transient Climate Response to Cumulative CO₂ **WMO** World Meteorological Organization **Emissions** WOCE World Ocean Circulation Experiment TES **Tropospheric Emission Spectrometer** WSG Western Subarctic Gyre TIM Total Irradiance Monitor **XBT Expendable Bathythermograph** TNI Trans-Niño Index

TOA

TOMS

Top of the Atmosphere

Total Ozone Mapping Spectrometer

AV

Annex V: Contributors to the IPCC WGI Fifth Assessment Report

This annex should be cited as:

IPCC, 2013: Annex V: Contributors to the IPCC WGI Fifth Assessment Report. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Coordinating Lead Authors, Lead Authors, Review Editors and Contributing Authors are listed alphabetically by surname.

AAMAAS, Borgar

Center for International Climate and **Environmental Research Oslo** Norway

ABE-OUCHI, Ayako

University of Tokyo Japan

ABIODUN, Babatunde

University of Cape Town South Africa

ABRAHAM, Libu

Qatar Meteorological Department Qatar

ACHUTARAO, Krishna Mirle

Indian Institute of Technology India

ADEDOYIN, Akintayo John

University of Botswana Botswana

ADLER, Robert F.

University of Maryland **USA**

AHLSTRÖM, Anders

Lund University Sweden

ALDRIAN, Edvin

Agency for Meteorology, Climatology and Geophysics Indonesia

ALDRIN, Magne

Norwegian Computing Center and University of Oslo

Norway

ALEXANDER, Lisa V.

University of New South Wales Australia

ALLAN, Richard P.

University of Reading UK

ALLAN, Robert

Met Office Hadley Centre UK

ALLEN, Myles R.

University of Oxford

UK

ALLEN, Simon K.

IPCC WGI TSU, University of Bern Switzerland

ALLISON, Ian

Antarctic Climate and Ecosystems Cooperative Research Centre Australia

AMBRIZZI, Tércio

University of Sao Paulo

Brazil

AN, Soon-II

Yonsei University Republic of Korea

ANAV. Alessandro

University of Exeter

UK

ANCHUKAITIS, Kevin

Woods Hole Oceanographic Institution

ANDERSON, Bruce

Boston University

USA

ANDREWS, Oliver

University of East Anglia

ANDREWS, Timothy

Met Office Hadley Centre

AOKI, Shigeru

Hokkaido University Japan

AOYAMA, Michio

Meteorological Research Institute

ARAKAWA, Osamu

University of Tsukuba Japan

ARBLASTER, Julie

Bureau of Meteorology Australia

ARCHER, David

University of Chicago USA

ARENDT, Anthony A.

University of Alaska Fairbanks USA

ARORA, Vivek

Environment Canada

Canada

ARRITT, Raymond

Iowa State University

USA

ARTAXO, Paulo

University of Sao Paulo Brazil

BAEHR, Johanna

University of Hamburg

Germany

BAHR, David B.

University of Colorado Boulder USA

BALA, Govindasamy

Indian Institute of Science India

BALAN SAROJINI, Beena

University of Reading

UK

BALDWIN, Mark

University of Exeter

UK

BAMBER, Jonathan

University of Bristol

UK

BARINGER, Molly

National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory USA

BARLOW, Mathew

University of Massachusetts USA

BARRIOPEDRO, David

Universidad Complutense de Madrid Spain

BARTHOLY. Judit

Eötvös Loránd University Hungary

BARTLEIN, Patrick J.

University of Oregon **USA**

BATES. Nicholas R.

Bermuda Biological Station Bermuda

BEER, Jürg

Eawag - Swiss Federal Institute of Aquatic Science and Technology Switzerland

BELLOUIN, Nicolas

University of Reading

BENEDETTI, Angela

European Centre for Medium-Range Weather

Forecasts

IJK

BENITO, Gerardo

Consejo Superior de Investigaciones

Cientificas

Spain

BEYERLE. Urs

FTH 7urich

Switzerland

BIASUTTI, Michela

Columbia University

USA

BINDOFF, Nathaniel L.

University of Tasmania

Australia

BINER, Sébastien

Ouranos Consortium on Regional

Climatology and Adaptation to Climate

Change

Canada

BITZ, Cecilia M.

University of Washington

USA

BLAKE, Donald R.

University of California Irvine

USA

BODAS-SALCEDO, Alejandro

Met Office Hadley Centre

UK

BOER, George J.

Environment Canada

Canada

BOJARIU, Roxana

National Meteorological Administration

Romania

BONAN, Gordon

National Center for Atmospheric Research

USA

BONY, Sandrine

Laboratoire de Météorologie Dynamique,

Institut Pierre Simon Laplace

France

BOOTH, Ben B.B.

Met Office Hadley Centre

UK

BOPP. Laurent

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon

Laplace

France

BORGES. Alberto Vieira

Université de Liège

Belgium

BOUCHER, Olivier

Laboratoire de Météorologie Dynamique,

Institut Pierre Simon Laplace

France

BOUSQUET, Philippe

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon

Laplace

France

BOUWMAN. Lex

PBL Netherlands Environmental Assessment

Agency

Netherlands

BOX, Jason E.

Geological Survey of Denmark and Greenland

Denmark

BOYER, Timothy

National Oceanic and Atmospheric

Administration, National Oceanographic Data

Center

USA

BRACONNOT, Pascale

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon

Laplace

France

BRAUER, Achim

GFZ German Research Centre for

Geosciences

Germany

BRÉON, François-Marie

Laboratoire des Sciences du Climat et de

l'Environnement, Institut Pierre Simon Laplace

France

BRETHERTON, Christopher

University of Washington

USA

BROMWICH, David H.

Ohio State University

USA

BRÖNNIMANN, Stefan

University of Bern **Switzerland**

BROOKS, Harold E.

National Oceanic and Atmospheric Administration, National Severe Storms

Laboratory

USA

BROVKIN, Victor

Max Planck Institute for Meteorology Germany

BROWN, Josephine

Bureau of Meteorology

Australia

BROWN, Ross

Environment Canada

Canada

BROWNE, Oliver

University of Edinburgh

UK

BRUHWILER, Lori M.

National Oceanic and Atmospheric Administration, Earth System Research Laboratory

USA

BRUTEL-VUILMET, Claire

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

BYRNE, Robert H.

University of South Florida

USA

CAI, Wenju

CSIRO Marine and Atmospheric Research Australia

CALDEIRA, Kenneth

Carnegie Institution for Science

USA

CAMERON-SMITH, Philip

Lawrence Livermore National Laboratory USA

CAMILLONI. Ines

Universidad de Buenos Aires

Argentina

CAMPOS, Edmo

University of Sao Paulo

Brazil

CANADELL, Josep

CSIRO Marine and Atmospheric Research Australia

CANE, Mark

Columbia University

USA

CAO, Long

Zhejiang University

China

CARRASCO, Jorge

Direccion Meteorologica de Chile

Chile

CARSON, Mark

University of Hamburg

Germany

CARTER, Tim

Finnish Environment Institute

Finland

CARVALHO, Leila V.

University of California Santa Barbara

USA

CATTO, Jennifer

Monash University

Australia

CAVALCANTI, Iracema F.A.

National Institute for Space Research Brazil

CAZENAVE, Anny

Laboratoire d'Etudes en Géophysique et Océanographie Spatiales

France

CHADWICK, Robin

Met Office Hadley Centre

UK

CHAMBERS, Don

University of South Florida

USA

CHANG, Ping

Texas A&M University

USA

CHAPPELLAZ, Jérôme

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

CHARABI, Yassine Abdul-Rahman

Sultan Qaboos University

Oman

CHEN, Deliang

University of Gothenburg

Sweden

CHEN, Xiaolong

Institute of Atmospheric Physics, Chinese Academy of Sciences

China

CHEVALLIER, Frédéric

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace

France

CHHABRA, Abha

Indian Space Research Organisation India

CHIKAMOTO, Yoshimitsu

University of Hawaii

USA

CHOI, Jung

Seoul National University Republic of Korea

CHOU, Sin Chan

National Institute for Space Research Brazil

CHRISTENSEN, Jens Hesselbjerg

Danish Meteorological Institute

Denmark

CHRISTENSEN, Ole Bøssing

Danish Meteorological Institute Denmark

Deminark

CHRISTIDIS, Nikolaos Met Office Hadley Centre

UK

CHURCH, John A.

CSIRO Marine and Atmospheric Research Australia

CIAIS, Philippe

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon

Laplace France

CLARK, Peter U.

Oregon State University

USA

CLEVELAND, Cory

University of Montana

USA

CLIFTON, Olivia

Columbia University

USA

COGLEY, J. Graham

Trent University Canada

COLLINS, Matthew

University of Exeter

UK

COLLINS, William

University of Reading

UK

COLLINS, William

Lawrence Berkeley National Laboratory USA

COMISO, Josefino C.

National Aeronautics and Space

Administration, Goddard Space Flight Center USA

COOK, Edward

Columbia University

USA

COOK, Kerry H.

University of Texas

USA

COOLEY, Sarah

Woods Hole Oceanographic Institution USA

COOPER, Owen R.

Cooperative Institute for Research in Environmental Sciences USA

CORTI, Susanna

Institute of Atmospheric Sciences and Climate Italy

COX, Peter

University of Exeter UK

CROWLEY, Thomas

Braeheads Institute

UK

CUBASCH, Ulrich

Freie Universität Berlin

Germany

CUNNINGHAM, Stuart

Scottish Association of Marine Science UK

DAI, Aiguo

University at Albany

USA

DALSØREN, Stig B.

Center for International Climate and Environmental Research Oslo Norway

DANIEL, John S.

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

DAVIS, Robert E.

University of Virginia

USA

DAVIS, Sean M.

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

DE CASTRO, Manuel

Universidad de Castilla-La Mancha Spain

DE DECKKER, Patrick

Australian National University Australia

DE ELÍA, Ramón

Université du Québec à Montréal and Ouranos Consortium Canada

DE MENEZES, Viviane Vasconcellos

University of Tasmania Australia

DE VERNAL, Anne

Université du Québec à Montréal Canada

DEFRIES, Ruth

Columbia University USA

DEL GENIO, Anthony

National Aeronautics and Space Administration, Goddard Institute for Space Studies USA

DELCROIX, Thierry

Laboratoire d'Etudes en Géophysique et Océanographie Spatiales France

DELECLUSE, Pascale

Météo-France France

DELMONTE, Barbara

University of Milano-Bicocca Italy

DELSOLE, Tim

George Mason University USA

DENTENER. Frank J.

European Commission, Joint Research Center EU

DESER, Clara

National Center for Atmospheric Research USA

DINEZIO, Pedro

University of Hawaii

USA

DING, Yihui

National Climate Center, China Meteorological Administration China

DLUGOKENCKY, Edward J.

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

DOBLAS-REYES, Francisco

Institució Catalana de Recerca i Estudis Avançats and Institut Català de Ciències del Clima Spain

DOKKEN, Trond

Uni Research Norway Norway

DOMINGUES, Catia M.

Antarctic Climate and Ecosystems Cooperative Research Centre Australia

DONAT. Markus G.

University of New South Wales Australia

DONEY, Scott C.

Woods Hole Oceanographic Institution USA

DONG, Wenjie

Beijing Normal University China

DORE, John

Montana State University USA

DOWSETT, Harry J.

U.S. Geological Survey USA

DRIOUECH, Fatima

Direction de la Météorologie Nationale Morocco

DUFRESNE, Jean-Louis

Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace France

DURACK, Paul J.

Lawrence Livermore National Laboratory USA

EASTERLING, David R.

National Oceanic and Atmospheric Administration, Cooperative Institute for Climate and Satellites USA

EBY, Michael

University of Victoria Canada

EDWARDS, R. Lawrence

University of Minnesota USA

ELISEEV, Alexey

Russian Academy of Sciences Russian Federation

EMANUEL, Kerry

Massachusetts Institute of Technology USA

EMORI, Seita

National Institute for Environmental Studies Japan

ENDO, Hirokazu

Meteorological Research Institute Japan

ENFIELD, David B.

University of Miami USA

ERISMAN, Jan Willem

Louis Bolk Institute Netherlands

EUSKIRCHEN, Eugenie S.

University of Alaska Fairbanks USA

EVAN, Amato

Scripps Institution of Oceanography USA

EYRING, Veronika

DLR German Aerospace Center Germany

FACCHINI, Maria Cristina

Institute of Atmospheric Sciences and Climate Italy

FASULLO, John

National Center for Atmospheric Research USA

FEELY, Richard A.

National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory USA

FEINGOLD, Graham

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

FETTWEIS, Xavier

Université de Liège

Belgium

FICHEFET, Thierry

Université catholique de Louvain Belgium

FINE, Rana

University of Miami

USA

FIOLETOV, Vitali

Environment Canada

Canada

FIORE, Arlene M.

Columbia University and Lamont-Doherty Earth Observatory USA

FISCHER, Erich M.

ETH Zurich Switzerland

FISCHER, Hubertus

University of Bern Switzerland

FLANNER, Mark

University of Michigan USA

FLATO, Gregory

Environment Canada

Canada

FLEITMANN, Dominik

University of Reading

FOREST, Chris E.

Pennsylvania State University USA

FORSTER, Piers

University of Leeds

UK

FOSTER, Gavin

University of Southampton UK

FRAME, David

Victoria University of Wellington New Zealand

FREELAND, Howard

Fisheries and Oceans Canada

Canada

FRIEDLINGSTEIN, Pierre

University of Exeter

UK

FRÖHLICH, Claus

Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center

Switzerland

FUGLESTVEDT. Jan

Center for International Climate and Environmental Research Oslo Norway

FUZZI, Sandro

Institute of Atmospheric Sciences and Climate Italy

FYFE, John

Environment Canada

Canada

GALLOWAY, James

University of Virginia

USA

GANOPOLSKI, Andrey

Potsdam Institute for Climate Impact Research Germany

GAO, Xuejie

National Climate Center, China Meteorological Administration China

GARCÍA-SERRANO, Javier

Institut Català de Ciències del Clima Spain

GARDNER, Alex S.

Clark University

USA

GARZOLI, Silvia

National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory

USA

GATES, Lydia

Freie Universität Berlin Germany

GBOBANIYI, Emiola

Swedish Meteorological and Hydrological Institute Sweden

GEHRELS, W. Roland

University of York

UK

GERLAND, Sebastian

Norwegian Polar Institute

Norway

GHAN, Steven

Pacific Northwest National Laboratory USA

GIANNINI, Alessandra

Columbia University

USA

GIESEN, Rianne

Utrecht University Netherlands

GILLETT, Nathan

Environment Canada

Canada

GINOUX, Paul

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

GLECKLER, Peter J.

Lawrence Livermore National Laboratory USA

GONZÁLEZ ROUCO, Jesús Fidel

Universidad Complutense de Madrid Spain

GONZÁLEZ-DÁVILA. Melchor

Universidad de Las Palmas de Gran Canaria Spain

GOOD, Peter

Met Office Hadley Centre UK

GOOD, Simon

Met Office Hadley Centre UK

GOODESS, Clare

University of East Anglia UK

GOOSSE, Hugues

Université catholique de Louvain Belgium

GOSWAMI, Prashant

CSIR Centre for Mathematical Modelling and Computer Simulation India

GOVIN, Aline

MARUM Center for Marine Environmental

Sciences Germany

GRANIER, Claire

Laboratoire Atmosphères, Milieux,

Observations Spatiales, Institut Pierre Simon

Laplace France

GRAVERSON. Rune Grand

Stockholm University

Sweden

GRAY, Lesley

University of Oxford

 UK

GREGORY, Jonathan M.

University of Reading and Met Office Hadley

Centre UK

GREVE, Ralf

Hokkaido University

Japan

GRIFFIES, Stephen

National Oceanic and Atmospheric

Administration, Geophysical Fluid Dynamics

Laboratory

USA

GRUBER, Nicolas

ETH Zurich

Switzerland

GRUBER, Stephan

University of Zurich

Switzerland

GUEMAS, Virginie

Institut Català de Ciències del Clima

Spain

GUILYARDI, Eric

Laboratoire d'Océanographie et du Climat,

Institut Pierre Simon Laplace

France

GULEV, Sergey

P.P. Shirshov Institute of Oceanology

Russian Federation

GUPTA, Anil K.

Wadia Institute of Himalayan Geology

India

GURNEY, Kevin

Arizona State University

USA

GUTOWSKI, William J.

Iowa State University

USA

GUTZLER, David

University of New Mexico

USA

HAAS, Christian

York University

Canada

HAGEN, Jon Ove

University of Oslo

Norway

HAIGH, Joanna

Imperial College London

UK

HAIMBERGER, Leopold

University of Vienna

Austria

HALL, Alex

University of California Los Angeles

USA

HANNA, Edward

University of Sheffield

IJK

HANSINGO, Kabumbwe

University of Zambia

Zambia

HARGREAVES, Julia

Japan Agency for Marine-Earth Science and

Technology

Japan

HARIHARASUBRAMANIAN, Annamalai

University of Hawaii

USA

HARRISON, Sandy

Macquarie University

Australia

HARTMANN, Dennis L.

University of Washington

USA

HAWKINS, Ed

University of Reading

IJK

HAYWOOD, Alan

University of Leeds

UK

HEGERL, Gabriele C.

University of Edinburgh

UK

HEIMANN, Martin

Max Planck Institute for Biogeochemistry

Germany

HEINZE, Christoph

University of Bergen

Norway

HELD, Isaac

National Oceanic and Atmospheric

Administration, Geophysical Fluid Dynamics

Laboratory USA

HEMER, Mark

CSIRO Marine and Atmospheric Research

HENSE, Andreas

University of Bonn

Germany

Australia

HEWITSON, Bruce

University of Cape Town

South Africa

HEZEL, Paul J.

Université catholique de Louvain

Belgium

HO, Shu-Peng (Ben)

National Center for Atmospheric Research USA

HOCK, Regine

University of Alaska Fairbanks

USA

HODGES, Kevin I.

University of Reading

UK

HODNEBROG. Øivind

Center for International Climate and

Environmental Research Oslo

Norway

HOLGATE, Simon J.

Sea Level Research Foundation

UK

HOLLAND, David

New York University

USA

HOLLAND, Elisabeth A.

University of the South Pacific

с:::

HOLLAND, Greg

National Center for Atmospheric Research

USA

HOLLAND, Marika M.

National Center for Atmospheric Research USA

HOLLIS, Chris

GNS Science New Zealand

HOLMES, Christopher

University of California Irvine

USA

HOOSE, Corinna

Karlsruhe Institute of Technology Germany

HOPWOOD, Brett

Oak Ridge National Laboratory

USA

HORTON, Ben

Rutgers University

USA

HOUGHTON, Richard A.

Woods Hole Research Center

USA

HOUSE, Joanna I.

University of Bristol

UK

HOUWELING, Sander

Utrecht University Netherlands

HU, Yongyun

Peking University

China

HUANG, Jianping

Lanzhou University

China

HUANG, Ping

Institute of Atmospheric Physics, Chinese

Academy of Sciences

China

HUBER, Markus

ETH Zurich

Switzerland

HUNKE, Elizabeth

Los Alamos National Laboratory USA

HUNTER, John R.

University of Tasmania

Australia

HUNTER, Stephen

University of Leeds

UK

HURRELL, Jim

National Center for Atmospheric Research

HURTT, George

University of Maryland

USA

HUSS, Matthias

University of Fribourg

Switzerland

HUYBRECHTS, Philippe

Vrije Universiteit Brussel

Belgium

HYDES, David

National Oceanography Centre

UK

ILYINA, Tatiana

Max Planck Institute for Meteorology Germany

IMBERS QUINTANA, Jara

University of Oxford

UK

INFANTI, Johnna

University of Miami

USA

INGRAM, William

University of Oxford

UK

ISHII, Masayoshi

Meteorological Research Institute Japan

IVANOVA, Detelina

Lawrence Livermore National Laboratory USA

JACOB, Daniel

Harvard University

USA

JACOBS, Stanley

Columbia University

USA

JACOBSON, Andrew D.

Northwestern University

USA

JAIN, Atul

University of Illinois

USA

JAIN, Suman

University of Zambia

Zambia

JAKOB, Christian

Monash University

Australia

JANSEN, Eystein

University of Bergen

Norway

JANSSEN, Emily

University of Illinois

USA

JEVREJEVA, Svetlana

National Oceanography Centre

UK

JOHN, Jasmin

National Oceanic and Atmospheric

Administration, Geophysical Fluid Dynamics

Laboratory USA

JOHNS, Tim

Met Office Hadley Centre

UK

JOHNSON, Gregory C.

National Oceanic and Atmospheric

Administration, Pacific Marine Environmental

Laboratory USA

JONES, Andy

Met Office Hadley Centre

UK

JONES, Christopher

Met Office Hadley Centre

UK

JONES, Julie

University of Sheffield

UK

JOOS. Fortunat

University of Bern

Switzerland

JOSEY, Simon A.

National Oceanography Centre

UK

JOSHI, Manoi

University of East Anglia

UK

JOUGHIN, Ian

University of Washington

USA

JOUSSAUME, Sylvie

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon

Laplace

France

JOUZEL, Jean

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace

France

JUNGCLAUS, Johann

Max Planck Institute for Meteorology Germany

KAGEYAMA, Masa

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

KANIKICHARLA, Krishna Kumar

Indian Institute of Tropical Meteorology India

KANYANGA, Joseph Katongo

Zambia Meteorological Department Zambia

KANZOW, Torsten

GEOMAR Helmholtz Centre for Ocean Research Germany

KAPLAN, Alexey

Columbia University USA

KAPLAN, Jed O.

EPFL Lausanne Switzerland

KARL, David

University of Hawaii USA

KARUMURI, Ashok

Indian Institute of Tropical Meteorology India

KASER, Georg

University of Innsbruck

Austria

KASPAR, Frank

Deutscher Wetterdienst Germany

KATO. Etsushi

National Institute for Environmental Studies Japan

KATSMAN, Caroline

Royal Netherlands Meteorological Institute Netherlands

KATTSOV, Vladimir

Voeikov Main Geophysical Observatory Russian Federation

KATZFEY, Jack

CSIRO Marine and Atmospheric Research Australia

KAZMIN, Alexander

P.P. Shirshov Institute of Oceanology Russian Federation

KEELING, Ralph

Scripps Institution of Oceanography USA

KENNEDY, John J.

Met Office Hadley Centre UK

KENT, Elizabeth C.

National Oceanography Centre

KERMINEN, Veli-Matti

Finnish Meteorological Institute Finland

KEY, Robert M.

Princeton University USA

KHARIN, Viatcheslav

Environment Canada

Canada

KHATIWALA, Samar

Columbia University
USA

KIMOTO, Masahide

University of Tokyo Japan

KINNE, Stefan

Max Planck Institute for Meteorology Germany

KIRSCHKE, Stefanie

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

KIRTMAN, Ben

University of Miami

USA

KITOH, Akio

University of Tsukuba Japan

KJELLSTRÖM, Erik

Swedish Meteorological and Hydrological Institute Sweden

KLEIN, Stephen A.

Lawrence Livermore National Laboratory USA

KLEIN GOLDEWIJK, Kees

Utrecht University and PBL Netherlands Environmental Assessment Agency Netherlands

KLEIN TANK, Albert M.G.

Royal Netherlands Meteorological Institute Netherlands

KLEYPAS, Joan

National Center for Atmospheric Research USA

KLIMONT, Zbigniew

International Institute for Applied Systems Analysis Austria

KLOSTER, Silvia

Max Planck Institute for Meteorology Germany

KNIGHT, Jeff

Met Office Hadley Centre UK

KNUTSON, Thomas

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

KNUTTI, Reto

ETH Zurich Switzerland

KOCH, Dorothy

U.S. Department of Energy USA

KOIKE, Makoto

University of Tokyo Japan

KONDO, Yutaka

University of Tokyo Japan

KONIKOW, Leonard

U.S. Geological Survey USA

KOPP, Robert

Rutgers University USA

KÖRPER, Janina

Freie Universität Berlin

Germany

KOSSIN, James P.

National Oceanic and Atmospheric Administration, Cooperative Institute for Meteorological Satellite Studies USA

KOSTIANOY, Andrey

P.P. Shirshov Institute of Oceanology Russian Federation

KOVEN. Charles

Lawrence Berkeley National Laboratory USA

KRAVITZ, Ben

Pacific Northwest National Laboratory USA

KRINNER, Gerhard

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

KROEZE, Carolien

Wageningen University and Open Universiteit Nederland Netherlands

KULKARNI, Ashwini

Indian Institute of Tropical Meteorology India

KUNDETI, Koteswara Rao

Indian Institute of Tropical Meteorology India

KUSHNIR, Yochanan

Columbia University USA

KWOK, Ronald

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

KWON, Won-Tae

National Institute of Meteorological Research Republic of Korea

LAKEN, Benjamin

Instituto de Astrofisica de Canarias Spain

LAMARQUE, Jean-François

National Center for Atmospheric Research USA

LAMBECK, Kurt

Australian National University Australia

LANDAIS. Amaëlle

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

LANDERER, Felix

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

LASSEY. Keith

National Institute of Water and Atmospheric Research New Zealand

LAU, Ngar-Cheung

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

LAU, William K.

National Aeronautics and Space Administration, Goddard Institute for Space Studies USA

LAW, Rachel M.

CSIRO Marine and Atmospheric Research Australia

LAWRENCE, David M.

National Center for Atmospheric Research USA

LE BROCQ, Anne

University of Exeter

LE QUÉRÉ, Corinne

University of East Anglia

LEBSOCK, Matthew

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

LEE, David

Manchester Metropolitan University UK

LEE. Kitack

Pohang University of Science and Technology Republic of Korea

LEE, Robert W.

University of Reading UK

LEE, Tong

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

LEMKE, Peter

Alfred Wegener Institute for Polar and Marine Research Germany

LENAERTS, Jan

Utrecht University Netherlands

LENDERINK, Geert

Royal Netherlands Meteorological Institute Netherlands

LENNARD, Chris

University of Cape Town South Africa

LENTON, Andrew

CSIRO Marine and Atmospheric Research Australia

LEULIETTE, Eric

National Oceanic and Atmospheric Administration, Center for Satellite Applications and Research USA

LEUNG, Lai-yung Ruby

Pacific Northwest National Laboratory USA

LEVERMANN, Anders

Potsdam Institute for Climate Impact Research Germany

LI, Camille

University of Bergen Norway

LI, Hongmei

Max Planck Institute for Meteorology Germany

LIAO, Hong

Institute of Atmospheric Physics, Chinese Academy of Sciences China

LIDDICOAT, Spencer

Met Office Hadley Centre UK

LIGTENBERG, Stefan

Utrecht University Netherlands

LIN, Renping

Institute of Atmospheric Physics, Chinese Academy of Sciences

China

LITTLE, Christopher M.

Princeton University

USA

LO, Fiona

Cornell University

USA

LOCKWOOD, Mike

University of Reading

UK

LOEB. Norman G.

National Aeronautics and Space Administration, Langley Research Center USA

LOHMANN, Ulrike

ETH Zurich Switzerland

LOMAS, Mark R.

University of Sheffield

UK

LOSADA, Teresa

Universidad de Castilla-La Mancha Spain

LOTT, Fraser

Met Office Hadley Centre

UK

LU, Jian

George Mason University

USA

LUCAS, Christopher

Bureau of Meteorology

Australia

LUCHT, Wolfgang

Potsdam Institute for Climate Impact

Research Germany

LUNT, Daniel J.

University of Bristol

UK

LUO, Yiqi

University of Oklahoma

USA

LUTERBACHER, Jürg

Justus-Liebig University Giessen

Germany

MACKELLAR, Neil C.

University of Cape Town

South Africa

MAGAÑA, Victor

Universidad Nacional Autonoma de Mexico Mexico

MAHLSTEIN, Irina

Federal Office of Meteorology and

Climatology MeteoSwiss

Switzerland

MAHOWALD, Natalie

Cornell University

USA

MAKI, Takashi

Meteorological Research Institute Japan

MARENGO, José

National Institute for Space Research

MARKUS, Thorsten

National Aeronautics and Space

Administration, Goddard Space Flight Center USA

MARLAND, Gregg

Appalachian State University USA

MAROTZKE, Jochem

Max Planck Institute for Meteorology Germany

MARSHALL, Gareth

British Antarctic Survey

UK

MARSTON, George

University of Reading

UK

MARZEION, Ben

University of Innsbruck

Austria

MASSOM, Rob

Australian Antarctic Division

Australia

MASSON-DELMOTTE, Valérie

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon

Laplace France

MASSONNET, François

Université catholique de Louvain

Belgium

MATTHEWS, H. Damon

Concordia University

Canada

MAURITZEN, Cecilie

Center for International Climate and Environmental Research Oslo Norway

MAYORGA, Emilio

University of Washington

USA

MCGREGOR, Shayne

University of New South Wales Australia

MCINNES, Kathleen L.

CSIRO Marine and Atmospheric Research Australia

MEARNS, Linda

National Center for Atmospheric Research

MEARS, Carl A.

Remote Sensing Systems

USA

MEEHL, Gerald

National Center for Atmospheric Research

MEINSHAUSEN, Malte

Potsdam Institute for Climate Impact

Research Germany

MELTON, Joe R.

Environment Canada

Canada

MENDOZA, Blanca

Universidad Nacional Autonoma de Mexico Mexico

MENÉNDEZ, Claudio

Universidad de Buenos Aires

Argentina

MENÉNDEZ, Melisa

Universidad de Cantabria

Spain

MENNE, Matthew

National Oceanic and Atmospheric Administration, National Climatic Data

Center USA

MERCHANT, Christopher J.

University of Edinburgh

UK

MERNILD, Sebastian H.

Los Alamos National Laboratory USA

MERRIFIELD, Mark A.

University of Hawaii

USA

METZL, Nicolas

Laboratoire d'Océanographie et du Climat, Institut Pierre Simon Laplace

France

MILNE, Glenn A.

University of Ottawa

Canada

MIN, Seung-Ki

Pohang University of Science and Technology Republic of Korea

MITCHELL, Daniel

University of Oxford

UK

MITROVICA, Jerry X.

Harvard University

USA

MOBERG, Anders

Stockholm University

Sweden

MOHOLDT, Geir

Scripps Institution of Oceanography

MOKHOV, Igor I.

A.M. Obukhov Institute of Atmospheric Physics

Russian Federation

MOKSSIT, Abdalah

Direction de la Météorologie Nationale Morocco

MÖLG, Thomas

Technical University Berlin Germany

MONSELESAN, Didier

CSIRO Marine and Atmospheric Research Australia

MONTZKA, Stephen A.

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

MORAK, Simone

University of Reading

UK

MORDY, Calvin

National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory USA

MORICE, Colin P.

Met Office Hadley Centre

UK

MOTE, Philip

Oregon State University

USA

MOTTRAM, Ruth

Danish Meteorological Institute Denmark

Delilliaik

MSADEK, Rym

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

MUDELSEE, Manfred

Alfred Wegener Institute for Polar and Marine Research

Germany

MÜLLER, Stefanie

Freie Universität Berlin

Germany

MUHS, Daniel R.

U.S. Geological Survey

USA

MULITZA, Stefan

MARUM Center for Marine Environmental

Sciences Germany

MUNHOVEN, Guy

Université de Liège

Belgium

MURAKAMI, Hiroyuki

University of Hawaii

USA

MURPHY, Daniel

National Oceanic and Atmospheric Administration, Earth System Research Laboratory

USA

MURRAY, Tavi

Swansea University

UK

MYHRE, Cathrine Lund

Norwegian Institute for Air Research Norway

MYHRE, Gunnar

Center for International Climate and Environmental Research Oslo Norway

MYNENI, Ranga B.

Boston University

USA

NAIK, Vaishali

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

NAISH, Tim

Victoria University of Wellington New Zealand

NAKAJIMA, Teruyuki

University of Tokyo

Japan

NATH, Mary Jo

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

NEELIN, J. David

University of California Los Angeles USA

NEREM, R. Steven

Cooperative Institute for Research in Environmental Sciences

USA

NICHOLAS, J.P.

Ohio State University

USA

NICK, Faezeh

UNIS - The University Centre in Svalbard Norway

NIELSEN, Claus J.

University of Oslo

Norway

NIWA, Yosuke

Meteorological Research Institute Japan

NOJIRI, Yukihiro

National Institute for Environmental Studies Japan

NORBY, Richard J.

Oak Ridge National Laboratory USA

NORRIS, Joel R.

Scripps Institution of Oceanography USA

NUNN, Patrick D.

University of New England

Australia

O'CONNOR, Fiona

Met Office Hadley Centre

IJK

O'DOWD, Colin

National University of Ireland, Galway Ireland

O'NEILL, Brian C.

National Center for Atmospheric Research USA

OLAFSSON, Jon

University of Iceland

Iceland

OLESEN, Martin

Danish Meteorological Institute Denmark

ORR. James

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

ORSI, Alejandro

Texas A&M University USA

OSBORN, Timothy

University of East Anglia UK

OTTO, Alexander

University of Oxford UK

OTTO, Friederike

University of Oxford

UK

OTTO-BLIESNER, Bette

National Center for Atmospheric Research USA

OVERDUIN, Pier Paul

Alfred Wegener Institute for Polar and Marine Research Germany

OVERLAND, James

National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory USA

PAINTER, Jeff

Lawrence Livermore National Laboratory USA

PALMER, Tim

University of Oxford

UK

PARK, Geun-Ha

Korea Institute of Ocean Science and Technology Republic of Korea

PARK, Geun-Ha

National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory USA

PARKER, David E.

Met Office Hadley Centre UK

PARRENIN, Frédéric

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

PATRA, Prabir

Japan Agency for Marine-Earth Science and Technology Japan

PATRICOLA, Christina M.

Texas A&M University USA

PAUL, Frank

University of Zurich Switzerland

PAVLOVA, Tatiana

Voeikov Main Geophysical Observatory Russian Federation

PAYNE, Antony J.

University of Bristol UK

PEARSON, Paul N.

Cardiff University UK

PENNER, Joyce

University of Michigan USA

PEREGON, Anna

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace

France

PERLWITZ, Judith

Cooperative Institute for Research in Environmental Sciences USA

PERRETTE, Mahé

Potsdam Institute for Climate Impact Research Germany

PETERS, Glen P.

Center for International Climate and Environmental Research Oslo Norway

PETERS, Wouter

Wageningen University Netherlands

PETERSCHMITT, Jean-Yves

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

PEYLIN, Philippe

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

PFEFFER, W. Tad

University of Colorado Boulder USA

PHILIPPON-BERTHIER, Gwenaëlle

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

PIAO, Shilong

Peking University China

PIERCE, David

Scripps Institution of Oceanography USA

PIPER, Stephen

Scripps Institution of Oceanography

PITMAN, Andy

University of New South Wales Australia

PLANTON, Serge

Météo-France France

PLATTNER, Gian-Kasper

IPCC WGITSU, University of Bern Switzerland

POLCHER, Jan

Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace France

POLLARD, David

Pennsylvania State University USA

POLSON, Debbie

University of Edinburgh

POLYAKOV, Igor

University of Alaska Fairbanks USA

PONGRATZ, Julia

Max Planck Institute for Meteorology Germany

POULTER, Benjamin

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

POWER, Scott B.

Bureau of Meteorology Australia

PRABHAT

Lawrence Berkeley National Laboratory USA

PRATHER, Michael

University of California Irvine USA

PROWSE, Terry

Environment Canada Canada

PURKEY, Sarah G.

University of Washington USA

OIAN, Yun

Pacific Northwest National Laboratory USA

Co-Chair IPCC WGI, China Meteorological Administration China

QIU, Bo

University of Hawaii **USA**

QUINN, Terrence

University of Texas

USA

RADIĆ, Valentina

University of British Columbia Canada

RAE, Jamie

Met Office Hadley Centre

RAHIMZADEH, Fatemeh

Islamic Republic of Iran Meteorological Organization

Iran

RAHMSTORF, Stefan

Potsdam Institute for Climate Impact Research Germany

RÄISÄNEN, Jouni

University of Helsinki

Finland

RAMASWAMY, Venkatachalam

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory **USA**

RAMESH, Rengaswamy

Physical Research Laboratory India

RANDALL, David

Colorado State University USA

RANDEL, William J.

National Center for Atmospheric Research USA

RASCH, Philip

Pacific Northwest National Laboratory USA

RAUSER, Florian

Max Planck Institute for Meteorology Germany

RAVISHANKARA, A.R.

National Oceanic and Atmospheric Administration, Earth System Research Laboratory

USA

RAY, Suchanda

CSIR Centre for Mathematical Modelling and Computer Simulation India

RAYMOND, Peter A.

Yale University USA

RAYNAUD, Dominique

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

RAYNER, Peter

University of Melbourne

Australia

REASON, Chris

University of Cape Town South Africa

REICH, Katharine Davis

University of California Los Angeles USA

REID, Jeffrey

U.S. Naval Research Laboratory USA

REN, Jiawen

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences China

RENWICK, James

Victoria University of Wellington New Zealand

REVERDIN, Gilles

Laboratoire d'Océanographie et du Climat, Institut Pierre Simon Laplace France

RHEIN, Monika

University of Bremen Germany

RIBES, Aurélien

Météo-France France

RICHTER, Andreas

University of Bremen Germany

RICHTER, Carolin

World Meteorological Organization Switzerland

RIDGWELL, Andy

University of Bristol UK

RIGBY, Matthew

University of Bristol UK

RIGNOT, Eric

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

RILEY, William J.

Lawrence Berkeley National Laboratory USA

RINGEVAL, Bruno

Utrecht University Netherlands

RINTOUL, Stephen R.

CSIRO Marine and Atmospheric Research Australia

ROBINSON, David

Rutgers University

USA

ROBOCK, Alan

Rutgers University

USA

RÖDENBECK, Christian

Max Planck Institute for Biogeochemistry Germany

RODRIGUES, Luis R.L.

Institut Català de Ciències del Clima Spain

RODRÍGUEZ DE FONSECA, Belén

Universidad Complutense de Madrid Spain

RODWELL, Mark

European Centre for Medium-Range Weather Forecasts UK

ROEMMICH, Dean

Scripps Institution of Oceanography USA

ROGELJ, Joeri

ETH Zurich Switzerland

ROHLING, Eelco

Australian National University Australia

ROJAS, Maisa

Universidad de Chile

Chile

ROMANOU, Anastasia

Columbia University

USA

ROTH, Raphael

University of Bern Switzerland

ROTSTAYN, Leon

CSIRO Marine and Atmospheric Research Australia

RUMMUKAINEN, Markku

Swedish Meteorological and Hydrological Institute Sweden

RUSTICUCCI. Matilde

Universidad de Buenos Aires

Argentina

RUTI, Paolo

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

Italy

SABINE, Christopher

National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory USA

SAENKO, Oleg

Environment Canada

Canada

SALZMANN, Ulrich

Northumbria University

UK

SAMSET, Bjørn

Center for International Climate and Environmental Research Oslo Norway

SANTER, Benjamin D.

Lawrence Livermore National Laboratory USA

SARR, Abdoulaye

National Meteorological Agency of Senegal Senegal

SATHEESH, S.K.

Indian Institute of Science India

SAUNOIS, Marielle

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace

France

SAVARINO, Joël

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

SCAIFE, Adam A.

Met Office Hadley Centre

UK

SCHÄR, Christoph

ETH Zurich Switzerland

SCHMIDT, Hauke

Max Planck Institute for Meteorology Germany

SCHMIDTKO, Sunke

University of East Anglia

UK

SCHMITT, Raymond

Woods Hole Oceanographic Institution

SCHMITTNER, Andreas

Oregon State University

USA

SCHOOF, Christian

University of British Columbia Canada

SCHULZ, Jörg

EUMETSAT Germany

SCHULZ, Michael

MARUM Center for Marine Environmental Sciences

Germany

SCHULZ, Michael

Norwegian Meteorological Institute Norway

SCHULZWEIDA, Uwe

Max Planck Institute for Meteorology Germany

SCHURER, Andrew

University of Edinburgh

SCHUUR, Edward

University of Florida USA

SCINOCCA, John

Environment Canada Canada

SCREEN, James

University of Exeter

SEAGER, Richard

Columbia University USA

SEBBARI, Rachid

Direction de la Météorologie Nationale Morocco

SEDLÁČEK, Jan

ETH Zurich Switzerland

SEIDEL, Dian J.

National Oceanic and Atmospheric Administration, Air Resources Laboratory USA

SEMENOV, Vladimir

Russian Academy of Sciences

Russian Federation

SEXTON, David

Met Office Hadley Centre

UK

SHAFFREY, Len C.

University of Reading

UK

SHAKUN, Jeremy

Boston College

USA

SHAO, XueMei

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences

China

SHARP, Martin

University of Alberta

Canada

SHEPHERD, Theodore

University of Reading

UK

SHERWOOD, Steven

University of New South Wales

Australia

SHIKLOMANOV, Nikolay

George Washington University

USA

SHIMADA, Koji

Tokyo University of Marine Science and

Technology Japan

SHINDELL, Drew

National Aeronautics and Space

Administration, Goddard Institute for Space

Studies

USA

SHINE, Keith

University of Reading

UK

SHIOGAMA, Hideo

National Institute for Environmental Studies Japan

SHONGWE, Mxolisi

South African Weather Service

South Africa

SILLMANN, Jana

Environment Canada

Canada

SIMMONS, Adrian

European Centre for Medium-Range Weather

Forecasts

IJK

SITCH, Stephen

University of Exeter

UK

SLANGEN, Aimée

CSIRO Marine and Atmospheric Research Australia

Australia

SLATER, Andrew

National Snow and Ice Data Center

USA

SMERDON, Jason

Columbia University

IISΔ

SMIRNOV, Dmitry

Russian Academy of Sciences

Russian Federation

SMITH, Doug

Met Office Hadley Centre

HK

SMITH, Sharon

Natural Resources Canada

Canada

SMITH, Steven J.

Pacific Northwest National Laboratory

SMITH, Thomas M.

National Oceanic and Atmospheric Administration, Center for Satellite

Applications and Research

USA

SODEN, Brian J.

University of Miami

USA

SOLMAN, Silvina

Universidad de Buenos Aires

Argentina

SOLOMINA, Olga

Russian Academy of Sciences

Russian Federation

SPAHNI, Renato

University of Bern

Switzerland

SPERBER, Kenneth

Lawrence Livermore National Laboratory USA

STAMMER, Detlef

University of Hamburg

Germany

STAMMERJOHN, Sharon

University of Colorado Boulder

USA

STEFFEN, Konrad

Swiss Federal Institute for Forest, Snow and

Landscape Research WSL

Switzerland

STENDEL, Martin

Danish Meteorological Institute

Denmark

STEPHENS, Graeme

National Aeronautics and Space

Administration, Jet Propulsion Laboratory

USA

STEPHENSON, David B.

University of Exeter

UK

STEVENS, Bjorn

Max Planck Institute for Meteorology

Germany

STEVENSON, David S.

University of Edinburgh

UK

STEVENSON, Samantha

University of Hawaii

USA

STIER, Philip

University of Oxford

UK

STÖBER, Uwe

University of Bremen

Germany

STOCKER, Benjamin D.

University of Bern

Switzerland

STOCKER, Thomas F.

Co-Chair IPCC WGI, University of Bern

Switzerland

STORELVMO, Trude

Yale University

USA

STOTT, Peter A.

Met Office Hadley Centre

UK

STRAMMA, Lothar

GEOMAR Helmholtz Centre for Ocean

Research Germany

STUBENRAUCH, Claudia

Laboratoire de Météorologie Dynamique,

Institut Pierre Simon Laplace

France

SUGA, Toshio

Tohoku University

Japan

SUTTON, Rowan

University of Reading

UK

SWART, Neil

University of Victoria

Canada

TAKAHASHI, Taro

Columbia University

USA

TAKAYABU, Izuru

Meteorological Research Institute

Japan

TAKEMURA, Toshihiko

Kyushu University

Japan

TALLEY, Lynne D.

Scripps Institution of Oceanography

USA

TANGANG, Fredolin

National University of Malaysia

Malaysia

TANHUA, Toste

GEOMAR Helmholtz Centre for Ocean

Research

Germany

TANS, Pieter

National Oceanic and Atmospheric

Administration, Earth System Research

Laboratory

USA

TARASOV, Pavel

Freie Universität Berlin

Germany

TAYLOR, Karl

Lawrence Livermore National Laboratory

USA

TEBALDI, Claudia

Climate Central, Inc.

USA

TETT, Simon

University of Edinburgh

UK

TEULING, Adriaan J. (Ryan)

Wageningen University

Netherlands

THOMPSON, Rona L.

Norwegian Institute for Air Research

Norway

THORNE, Peter W.

Nansen Environmental and Remote Sensing

Center

Norway

THORNTON, Peter

Oak Ridge National Laboratory

USA

TIMMERMANN, Axel

University of Hawaii

USA

TJIPUTRA, Jerry

Uni Research Norway

Norway

TRENBERTH, Kevin

National Center for Atmospheric Research

USA

TÜRKEŞ, Murat

Çanakkale Onsekiz Mart University

Turkey

TURNER, John

British Antarctic Survey

UK

UMMENHOFER, Caroline

Woods Hole Oceanographic Institution

HSZ

UNNIKRISHNAN, Alakkat S.

National Institute of Oceanography

India

VAN ANGELEN, Jan H.

Utrecht University

Netherlands

VAN DE BERG, Willem Jan

Utrecht University

Netherlands

VAN DE WAL, Roderik

Utrecht University

Netherlands

VAN DEN BROEKE, Michiel

Utrecht University

Netherlands

VAN DEN HURK, Bart

Royal Netherlands Meteorological Institute Netherlands

VAN DER WERF, Guido

VU University Amsterdam

Netherlands

VAN NOIJE, Twan

Royal Netherlands Meteorological Institute Netherlands

VAN OLDENBORGH, Geert Jan

Royal Netherlands Meteorological Institute Netherlands

VAN VUUREN. Detlef

PBL Netherlands Environmental Assessment

Agency

Netherlands

VAUGHAN, David G.

British Antarctic Survey

UK

VAUTARD, Robert

Laboratoire des Sciences du Climat et de l'Environnement. Institut Pierre Simon

Laplace

France

VAVRUS, Steve

University of Wisconsin

USA

VECCHI, Gabriel

National Oceanic and Atmospheric

Administration, Geophysical Fluid Dynamics

Laboratory

USA

VELICOGNA, Isabella

University of California Irvine

USA

VERNIER, Jean-Paul

National Aeronautics and Space

Administration, Langley Research Center USA

VESALA, Timo

University of Helsinki

Finland

VINTHER, Bo M.

University of Copenhagen

Denmark

VITERBO. Pedro

Instituto de Meteorologia

Portugal

VIZCAÍNO, Miren

Delft University of Technology

Netherlands

VON SCHUCKMANN, Karina

Institut Français de Recherche pour l'Exploitation de la Mer

France

VON STORCH, Hans

University of Hamburg

Germany

VOULGARAKIS, Apostolos

Imperial College London

IJK

WADA, Yoshihide

Utrecht University Netherlands

WADHAMS, Peter

University of Cambridge

UK

WAELBROECK, Claire

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace

France

WALSH, Kevin

University of Melbourne

Australia

WANG, Bin

University of Hawaii

USA

WANG, Chunzai

National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory

USA

WANG, Fan

Institute of Oceanology, Chinese Academy of Sciences

China

WANG, Hui-Jun

Institute of Atmospheric Physics, Chinese Academy of Sciences

China

WANG, Junhong

National Center for Atmospheric Research USA

WANG, Muyin

National Oceanic and Atmospheric Administration, Joint Institute for the Study of the Atmosphere and Ocean USA

WANG, Xiaolan L.

Environment Canada

Canada

WANIA, Rita

Austria

WANNER, Heinz

University of Bern Switzerland

WANNINKHOF, Rik

National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory

USA

WARD, Daniel S.

Cornell University

USA

WATTERSON, Ian

CSIRO Marine and Atmospheric Research Australia

WEAVER, Andrew J.

University of Victoria

Canada

WEBB, Mark

Met Office Hadley Centre

UK

WEBB, Robert

National Oceanic and Atmospheric Administration, Earth System Research Laboratory

USA

WEHNER, Michael

Lawrence Berkeley National Laboratory USA

WEISHEIMER, Antje

University of Oxford

UK

WEISS, Ray F.

Scripps Institution of Oceanography USA

WHITE, Neil J.

CSIRO Marine and Atmospheric Research Australia

WIDLANSKY, Matthew

University of Hawaii

USA

WIJFFELS, Susan

CSIRO Marine and Atmospheric Research Australia

WILD, Martin

ETH Zurich Switzerland

WILD, Oliver

Lancaster University

UK

WILLETT, Kate M.

Met Office Hadley Centre

UK

WILLIAMS, Keith

Met Office Hadley Centre

UK

WINKELMANN, Ricarda

Potsdam Institute for Climate Impact

Research Germany

WINKER, David

National Aeronautics and Space Administration, Langley Research Center USA

WINTHER, Jan-Gunnar

Norwegian Polar Institute

Norway

WITTENBERG, Andrew

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

WOLF-GLADROW, Dieter

Alfred Wegener Institute for Polar and Marine Research

Germany

WOOD, Simon N.

University of Bath

UK

WOODWORTH, Philip L.

National Oceanography Centre

UK

WOOLLINGS, Tim

University of Reading

UK

WORBY, Anthony

CSIRO Marine and Atmospheric Research Australia

WRATT, David

National Institute of Water and Atmospheric

Research New Zealand

WUEBBLES, Donald

University of Illinois

WYANT, Matthew

University of Washington

USA

USA

XIAO, Cunde

Chinese Academy of Meteorological Sciences, China Meteorological Administration China

XIE, Shang-Ping

Scripps Institution of Oceanography USA

YASHAYAEV, Igor

Bedford Institute of Oceanography Canada

YASUNARI, Tetsuzo

Nagoya University

Japan

YEH, Sang-Wook

Hanyang University Republic of Korea

YIN, Jianjun

University of Arizona

USA

YOKOYAMA, Yusuke

University of Tokyo

Japan

YOSHIMORI, Masakazu

University of Tokyo

Japan

YOUNG, Paul

Lancaster University

UK

YU, Lisan

Woods Hole Oceanographic Institution USA

ZACHOS, James

University of California Santa Cruz USA

ZAEHLE, Sönke

Max Planck Institute for Biogeochemistry Germany

ZAPPA, Giuseppe

University of Reading

UK

ZENG, Ning

University of Maryland

USA

ZHAI, Panmao

National Climate Center, China Meteorological Administration

China

ZHANG, Chidong

University of Miami

USA

ZHANG, Hua

National Climate Center, China Meteorological Administration China

ZHANG, Jianglong

University of North Dakota

USA

ZHANG, Lixia

Institute of Atmospheric Physics, Chinese Academy of Sciences

China

ZHANG, Rong

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

ZHANG, Tingjun

Cooperative Institute for Research in Environmental Sciences

USA

ZHANG, Xiao-Ye

Chinese Academy of Meteorological Sciences, China Meteorological Administration China

ZHANG, Xuebin

Environment Canada

Canada

ZHAO, Lin

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences

China

ZHAO, Zong-Ci

National Climate Center, China Meteorological Administration China

ZHENG, Xiaotong

Ocean University of China

China

ZHOU, Tianjun

Institute of Atmospheric Physics, Chinese

Academy of Sciences

China

ZICKFELD, Kirsten

Simon Fraser University

Canada

ZOU. Liwei

Institute of Atmospheric Physics, Chinese

Academy of Sciences

China

ZWARTZ, Dan

Victoria University of Wellington New Zealand

ZWIERS, Francis

University of Victoria

Canada

AVI

Annex VI: Expert Reviewers of the IPCC WGI Fifth Assessment Report

This annex should be cited as:

IPCC, 2013: Annex VI: Expert Reviewers of the IPCC WGI Fifth Assessment Report. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

AAMAAS, Borgar

Center for International Climate and **Environmental Research Oslo** Norway

ABRAHAM, JOHN

University of St. Thomas USA

ADAM. Hussein

Wad Medani Ahlia College Sudan

ÅGREN, Göran

Swedish University of Agricultural Sciences Sweden

ALEXANDER, Lisa

University of New South Wales Australia

ALEYNIK, Dmitry

Scottish Association for Marine Science

ALLAN, Richard

University of Reading

ALLEN, Simon K.

IPCC WGI TSU, University of Bern Switzerland

ALLEY, Richard B.

Pennsylvania State University USA

ALLISON, Ian

Antarctic Climate and Ecosystems Cooperative Research Centre Australia

ALORY, Gaël

Laboratoire d'Etudes en Géophysique et Océanographie Spatiales France

ALPERT, Alice

Massachusetts Institute of Technology **USA**

AMJAD, Muhammad

Global Change Impact Studies Centre Pakistan

ANDEREGG, William

Stanford University USA

ANDERSEN, Bo

Norwegian Space Centre Norway

ANDREAE, Meinrat O.

Max Planck Institute for Chemistry Germany

ANDREU-BURILLO, Isabel

Institut Català de Ciències del Clima

ANDREWS, Oliver David

University of East Anglia

AÑEL CABANELAS, Juan Antonio

University of Oxford

UK

ANENBERG, Susan

U.S. Environmental Protection Agency USA

ANNAMALAI, H.

University of Hawaii

USA

ANNAN, James

Japan Agency for Marine-Earth Science and Technology Japan

APITULEY, Arnoud

Royal Netherlands Meteorological Institute Netherlands

APPENZELLER, Christof

Federal Office of Meteorology and Climatology MeteoSwiss Switzerland

ARBLASTER, Julie

Bureau of Meteorology Australia

ARNETH, Almut

Karlsruhe Institute of Technology Germany

ARORA, Vivek

Environment Canada

Canada

ARTALE, Vincenzo

Italian National Agency for New Technologies, Energy and Sustainable **Economic Development** Italy

ARTINANO, Begona

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Spain

ARTUSO, Florinda

Italian National Agency for New Technologies, Energy and Sustainable **Economic Development** Italy

ASMI, Ari

University of Helsinki Finland

AUAD, Guillermo

Bureau of Ocean Energy Management USA

AUCAMP, Pieter

Ptersa Environmental **Management Consultants** South Africa

AZAR, Christian

Chalmers University of Technology Sweden

BADER, David

Lawrence Livermore National Laboratory USA

BADIOU, Pascal

Ducks Unlimited Canada Canada

BAHN, Michael

University of Innsbruck Austria

BAKAN, Stephan

Max Planck Institute for Meteorology Germany

BALTENSPERGER. Urs

Paul Scherrer Institute Switzerland

BAMBER, Jonathan

University of Bristol

UK

BAN-WEISS, George

Lawrence Berkeley National Laboratory and University of Southern California USA

BARKER, Stephen

Cardiff University UK

BARNETT, Tim

Scripps Institution of Oceanography USA

BARRETT, Jack

Imperial College London (retired) UK

BARRETT, Peter

Victoria University of Wellington New Zealand

BARRY, Roger

National Snow and Ice Data Center USA

BATES, J. Ray

University College Dublin Ireland

BATES, Timothy

National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory USA

BEKKI, Slimane

Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre Simon Laplace France

BELLOUIN, Nicolas

Met Office Hadley Centre UK

BELTRAN, Catherine

Université Pierre et Marie Curie France

BENNARTZ, Ralf

University of Wisconsin USA

BERNHARD, Luzi

Swiss Federal Institute for Forest, Snow and Landscape Research WSL Switzerland

BERNHARDT, Karl-Heinz

Leibniz Society of Sciences at Berlin Germany

BERNIER, Pierre

Natural Resources Canada Canada

BERNTSEN, Terje

University of Oslo

Norway

BERTHIER, Etienne

Laboratoire d'Etudes en Géophysique et Océanographie Spatiales France

BETTS. Richard

Met Office Hadley Centre UK

BETZ, Gregor

Karlsruhe Institute of Technology Germany

BHANDARI, Medani

Syracuse University USA

BINDOFF, Nathaniel L.

University of Tasmania

Australia

BINTANJA, Richard

Royal Netherlands Meteorological Institute Netherlands

BLADÉ, Ileana

Universitat de Barcelona

Spain

BLANCO, Juan A.

Universidad Pública de Navarra Spain

BLATTER, Heinz

ETH Zurich Switzerland

BLOMQVIST, Sven

Stockholm University

Sweden

BODAS-SALCEDO, Alejandro

Met Office Hadley Centre UK

BODE, Antonio

Instituto Español de Oceanografia Spain

BOEHM, Christian Reiner

Imperial College London UK

BOENING, Carmen

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

BOERSMA, Klaas Folkert

Royal Netherlands Meteorological Institute and Eindhoven University of Technology Netherlands

BOGNER, Jean E.

University of Illinois USA

BOKO, Michel

Université d'Abomey Calavi Benin

BOLLASINA, Massimo

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

BONNET, Sophie

Université du Québec

Canada

BONY, Sandrine

Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace France

BOOTH, Ben

Met Office Hadley Centre

BOSILOVICH, Michael

National Aeronautics and Space Administration, Goddard Space Flight Center USA

BOUCHER, Olivier

Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace France

BOULDIN, Jim

University of California Davis

BOURBONNIERE, Richard

Environment Canada Canada

BOURLES, Bernard

Institut de Recherche pour le Développement France

BOUSQUET, Philippe

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

BOWEN, Melissa

University of Auckland New Zealand

BOYER, Timothy

National Oceanic and Atmospheric Administration, National Oceanographic Data Center USA

BRACEGIRDLE, Thomas

British Antarctic Survey UK

BRACONNOT, Pascale

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

BRAESICKE, Peter

University of Cambridge UK

BREGMAN, Abraham

Royal Netherlands Meteorological Institute Netherlands

BRENDER, Pierre

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace and AgroParisTech France

BREWER, Michael

National Oceanic and Atmospheric Administration, National Climatic Data Center USA

BRIERLEY, Christopher

University College London UK

BRIFFA, Keith

University of East Anglia UK

BROMWICH, David

Ohio State University USA

BROOKS, Harold

National Oceanic and Atmospheric Administration, National Severe Storms Laboratory USA

BROVKIN, Victor

Max Planck Institute for Meteorology Germany

BROWN, Jaclyn

CSIRO Marine and Atmospheric Research Australia

BROWN, Josephine

Bureau of Meteorology Australia

BROWN, Simon

Met Office Hadley Centre UK

BURKETT, Virginia

U.S. Geological Survey USA

BURT, Peter

University of Greenwich

BURTON, David

Burton Systems Software USA

BUTENHOFF, Christopher

Portland State University USA

1500

BUTLER, James

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

CAESAR, John

Met Office Hadley Centre UK

CAGNAZZO, Chiara

Institute of Atmospheric Sciences and Climate Italy

CAI, Rongshuo

Third Institute of Oceanography, State Oceanic Administration China

CAI, Zucong

Nanjing Normal University China

CAINEY, Jill

UK

CALVO, Natalia

Universidad Complutense de Madrid Spain

CAMERON-SMITH, Philip

Lawrence Livermore National Laboratory USA

CANDELA, Lucila

Universitat Politècnica de Catalunya Spain

CAO, Jianting

General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources China

CARDIA SIMÕES, Jefferson

Universidade Federal do Rio Grande do Sul Brazil

CARDINAL, Damien

Université Pierre et Marie Curie France

CARTER, Timothy

Finnish Environment Institute Finland

CASELDINE, Chris

University of Exeter UK

CASSARDO, Claudio

University of Torino Italy

CASSOU, Christophe

Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique France

CEARRETA, Alejandro

Universidad del Pais Vasco Spain

CERMAK, Jan

Ruhr-Universität Bochum Germany

CERVARICH, Matthew

University of Illinois USA

CHADWICK, Robin

Met Office Hadley Centre UK

CHARLESWORTH, Mark

Keele University UK

CHARLSON, Robert

University of Washington

CHARPENTIER LJUNGQVIST, Fredrik

Stockholm University Sweden

CHAUVIN, Fabrice

Météo-France France

CHAZETTE, Patrick

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

CHE, Tao

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences China

CHEN, Xianyao

First Institute of Oceanography, State Oceanic Administration China

CHERCHI, Annalisa

Centro Euromediterraneo per i Cambiamenti Climatici and Istituto Nazionale di Geofisica e Vulcanologia Italy

CHHABRA, Abha

Indian Space Research Organisation India

CHIKAMOTO, Megumi

University of Hawaii

USA

CHIKAMOTO, Yoshimitsu

University of Hawaii

USA

CHOU, Chia

Academia Sinica Taiwan, China

CHRISTIAN, James

Fisheries and Oceans Canada

Canada

CHRISTOPHERSEN, Øyvind

Climate and Pollution Agency

Norway

CHRISTY, John

University of Alabama

USA

CHURCH, John

CSIRO Marine and Atmospheric Research

Australia

CHYLEK, Petr

Los Alamos National Laboratory

USA

CIRANO, Mauro

Federal University of Bahia

Brazil

CIURO, Darienne

University of Illinois

USA

CLARK, Robin

Met Office Hadley Centre

UK

CLAUSSEN, Martin

Max Planck Institute for Meteorology Germany

CLERBAUX, Cathy

Laboratoire Atmosphères, Milieux,

Observations Spatiales, Institut

Pierre Simon Laplace

France

CLIFT, Peter

Louisiana State University

USA

COAKLEY, James

Oregon State University

USA

COFFEY, Michael

National Center for Atmospheric Research USA

COGLEY, J. Graham

Trent University

Canada

COLE, Julia

University of Arizona

USA

COLLIER, Mark

CSIRO Marine and Atmospheric Research

Australia

COLLINS, Matthew

University of Exeter

UK

COLLINS, William

University of Reading

UK

COLMAN, Robert

Bureau of Meteorology

Australia

COLOSE, Chris

University at Albany

USA

COOPER, Owen

Cooperative Institute for Research

in Environmental Sciences

USA

COPSTEIN WALDEMAR, Celso

Porto Alegre Municipality, Environmental Department

Brazil

CORTESE, Giuseppe

GNS Science

New Zealand

CORTI, Susanna

European Centre for Medium-Range Weather Forecasts and Institute of Atmospheric Sciences and Climate

Italy

COTRIM DA CUNHA, Leticia

Rio de Janeiro State University

Brazil

COUMOU, Dim

Potsdam Institute for Climate

Impact Research

Germany

COVEY, Curt

Lawrence Livermore National Laboratory USA

CRAWFORD, James

USA

CRIMMINS, Allison

U.S. Environmental Protection Agency

USA

CRISTINI, Luisa

University of Hawaii

USA

CROK, Marcel

Netherlands

CURRY. Charles

University of Victoria

Canada

CURTIS, Jeffrey

University of Illinois

USA

DAI, Aiguo

University at Albany and National Center for Atmospheric Research USA

DAIRAKU, Koji

National Research Institute for Earth Science and Disaster Prevention

DAMERIS, Martin

DLR German Aerospace Center Germany

DANIEL, John

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

DANIELS, Emma

Wageningen University

Netherlands

DANIS, François

Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace

France

DAUTRAY, Robert

Académie des Sciences

France

DAVIDSON, Eric

Woods Hole Research Center USA

DAVIES, Michael

Coldwater Consulting Ltd

Canada

DAY, Jonathan

University of Reading

UK

DE ELIA, Ramon

Ouranos Consortium on Regional Climatology and Adaptation to Climate Change Canada

DE SAEDELEER, Bernard

Université catholique de Louvain Belgium

DE VRIES, Hylke

Royal Netherlands Meteorological Institute Netherlands

DEAN, Robert

University of Florida USA

DEL GENIO, Anthony

National Aeronautics and Space Administration, Goddard Institute for Space Studies USA

DELPLA, Ianis

Laboratoire d'Etude et de Recherche en Environnement et Santé France

DELSOLE, Timothy

George Mason University USA

DELWORTH, Thomas

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

DEMORY, Marie-Estelle

University of Reading UK

DÉQUÉ, Michel

Météo-France France

DERKSEN. Chris

Environment Canada Canada

DESIATO, Franco

Institute for Environmental Protection and Research

DEVARA, Panuganti C.S.

Indian Institute of Tropical Meteorology India

DEWALS, Benjamin

Université de Liège Belgium

DEWITT, David G.

Columbia University

USA

DIAZ MOREJON, Cristobal Felix

Ministry of Science, Technology and the Environment Cuba

DICKENS, Gerald

Rice University

USA

DIEDHIOU, Arona

Institut de Recherche pour le Développement France

DIMA, Mihai

University of Bucharest Romania

DING, Yihui

National Climate Center, China Meteorological Administration China

DING, Yongjian

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences China

DITLEVSEN, Peter

University of Copenhagen Denmark

DOHERTY, Ruth

University of Edinburgh UK

DOLE, Randall

National Oceanic and Atmospheric Administration, Earth System Research Laboratory

DOLMAN, Han

USA

VU University Amsterdam Netherlands

DOMINGUES, Catia M.

Antarctic Climate and Ecosystems Cooperative Research Centre Australia

DONAHUE, Neil

Carnegie Mellon University USA

DONNER, Leo

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

DOSTAL, Paul

DLR German Aerospace Center Germany

DOWNES, Stephanie

Australian National University Australia

DOYLE, Moira Evelina

Universidad de Buenos Aires

Argentina

DRAGONI, Walter

University of Perugia

Italy

DRIJFHOUT, Sybren

Royal Netherlands Meteorological Institute Netherlands

DU, Enzai

Peking University

China

DUAN, Anmin

Institute of Atmospheric Physics, Chinese Academy of Sciences China

DUCE, Robert

Texas A&M University USA

DUDOK DE WIT, Thierry

Université d'Orléans

France

DUNNE, Eimear

Finnish Meteorological Institute Finland

DUNSTONE, Nick

Met Office Hadley Centre UK

DURACK, Paul

Lawrence Livermore National Laboratory USA

DWYER, Ned

University College Cork Ireland

EASTERBROOK, Don

Western Washington University USA

EBI, Kristie

Stanford University USA

EISEN, Olaf

Alfred Wegener Institute for Polar and Marine Research Germany

EISENMAN, Ian

University of California San Diego USA

EKHOLM, Tommi

VTT Technical Research Centre of Finland Finland

ELDEVIK, Tor

University of Bergen

Norway

ELJADID, Ali Geath

Al-Fath University

Libya

EMANUEL, Kerry

Massachusetts Institute of Technology USA

ENOMOTO, Hiroyuki

National Institute of Polar Research Japan

ERICKSON, David

Oak Ridge National Laboratory USA

ESPINOZA, Jhan Carlo

Instituto Geofísico del Perú

Peru

ESSERY, Richard

University of Edinburgh

EVANS. Michael Neil

University of Maryland USA

EVANS, Wayne

York University Canada

EXBRAYAT, Jean-François

University of New South Wales Australia

EYNAUD, Frédérique

Université Bordeaux 1 France

FAHEY, David

National Oceanic and Atmospheric Administration, Earth System Research Laboratory

USA

FAN, Jiwen

Pacific Northwest National Laboratory USA

FARAGO, Tibor

St. Istvan University Hungary

FEINGOLD, Graham

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

FEIST, Dietrich

Max Planck Institute for Biogeochemistry Germany

FERRONE, Andrew

Karlsruhe Institute of Technology Germany

FESER, Frauke

Helmholtz-Zentrum Geesthacht Germany

FEULNER, Georg

Potsdam Institute for Climate Impact Research Germany

FICHEFET, Thierry

Université catholique de Louvain Belgium

FIELD, Christopher

Carnegie Institution for Science USA

FISCHER, Andreas

Federal Office of Meteorology and Climatology MeteoSwiss Switzerland

FISCHER, Hubertus

University of Bern Switzerland

FISCHLIN, Andreas

ETH Zurich Switzerland

FISHER, Joshua

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

FLORES, José-Abel

Universidad de Salamanca Spain

FLOSSMANN, Andrea

Université Blaise Pascal France

FOLBERTH, Gerd

Met Office Hadley Centre UK

FOLLAND, Christopher

Met Office Hadley Centre

UK

FORBES, Donald

Bedford Institute of Oceanography

Canada

FOREST, Chris

Pennsylvania State University USA

FORSTER, Piers

University of Leeds

UK

FOSTER, James

National Aeronautics and Space Administration, Goddard Space Flight Center USA

FOUNTAIN, Andrew

Portland State University USA

FRANKLIN, James

CLF-Chem Consulting SPRL Belgium

FRANKS, Stewart

University of Newcastle Australia Australia

FREDERIKSEN, Carsten

Bureau of Meteorology Australia

FREDERIKSEN, Jorgen

CSIRO Marine and Atmospheric Research Australia

FREE, Melissa

National Oceanic and Atmospheric Administration, Air Resources Laboratory USA

FREELAND, Howard

Fisheries and Oceans Canada Canada

FREPPAZ, Michele

University of Torino Italy

FRIEDLINGSTEIN, Pierre

University of Exeter UK

FROELICHER, Thomas

Princeton University USA

FRONZEK, Stefan

Finnish Environment Institute Finland

FRÜH, Barbara

Deutscher Wetterdienst

Germany

FU, Joshua Xiouhua

University of Hawaii USA

FU, Weiwei

Danish Meteorological Institute Denmark

FUGLESTVEDT, Jan

Center for International Climate and Environmental Research Oslo Norway

FUKASAWA, Masao

Japan Agency for Marine-Earth Science and Technology Japan

FUNG, Inez

University of California Berkeley USA

FUNK, Martin

ETH Zurich Switzerland

FYFE, John

Environment Canada Canada

GAALEMA, Stephen

Black Forest Engineering, LLC USA

GAGLIARDINI, Olivier

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

GAJEWSKI, Konrad

University of Ottawa Canada

GALDOS, Marcelo

Brazilian Bioethanol Science and Technology Laboratory Brazil

GALLEGO, David

Universidad Pablo de Olavide Spain

GANOPOLSKI, Andrey

Potsdam Institute for Climate Impact Research Germany

GAO, Xuejie

National Climate Center, China Meteorological Administration China

GARCIA-HERRERA, Ricardo

Universidad Complutense de Madrid Spain

GARIMELLA, Sarvesh

Massachusetts Institute of Technology USA

GARREAUD, René

Universidad de Chile

Chile

GATTUSO, Jean-Pierre

Observatoire Océanologique de Villefranche sur Mer, Université Pierre et Marie Curie France

GAUCI, Vincent

The Open University UK

GAYO, Eugenia M.

Centro de Investigaciones del Hombre en el Desierto Chile

GEDNEY, Nicola

Met Office Hadley Centre UK

GEHRELS, Roland

Plymouth University UK

GERBER, Stefan

University of Florida USA

GERLAND, Sebastian

Norwegian Polar Institute Norway

GERVAIS, François

Université François-Rabelais de Tours France

GETTELMAN, Andrew

National Center for Atmospheric Research USA

GHAN, Steven

Pacific Northwest National Laboratory USA

GHOSH, Sucharita

Swiss Federal Institute for Forest, Snow and Landscape Research WSL Switzerland

GIFFORD, Roger

CSIRO Plant Industry

Australia

GILBERT. Denis

Fisheries and Oceans Canada Canada

GILLETT, Nathan

Environment Canada Canada

GINOUX, Paul

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

GIORGETTA. Marco

Max Planck Institute for Meteorology Germany

GLIKSON, Andrew

Australian National University Australia

GODIN-BEEKMANN, Sophie

Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre Simon Laplace France

GOLAZ, Jean-Christophe

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

GONG, Daoyi

Beijing Normal University China

GONZALEZ, Patrick

U.S. National Park Service USA

GOOD, Peter

Met Office Hadley Centre UK

GOOD, Simon

Met Office Hadley Centre UK

GOODESS, Clare

University of East Anglia UK

GOOSSE, Hugues

Université catholique de Louvain Belgium

GORIS, Nadine

University of Bergen and Bjerknes Centre for Climate Research Norway

GOSWAMI, Santonu

Oak Ridge National Laboratory USA

1504

GOWER, James

Fisheries and Oceans Canada

Canada

GRAY, Vincent

New Zealand

GREGORY. Jonathan

University of Reading and Met

Office Hadley Centre

UK

GREWE, Volker

DLR German Aerospace Center

Germany

GRIFFIES, Stephen

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory

USA

GRIGGS, David

Monash University

Australia

GRIMM, Alice

Federal University of Parana

Brazil

GRINSTED, Aslak

University of Copenhagen

Denmark

GRUBER, Nicolas

ETH Zurich

Switzerland

GRUBER, Stephan

University of Zurich

Switzerland

GUGLIELMIN, Mauro

University of Insubria

Italy

GUILYARDI, Eric

Laboratoire d'Océanographie et du Climat, Institut Pierre Simon Laplace

France

GUTTORP, Peter

University of Washington and Norwegian Computing Center

USA

GUTZLER, David

University of New Mexico

USA

HAARSMA, Reindert

Royal Netherlands Meteorological Institute

Netherlands

HAEBERLI, Wilfried

University of Zurich

Switzerland

HAFEZ, Yehia

King Abdulaziz University

Saudi Arabia

HAGEN, David L.

AcrossTech

USA

HAGOS, Samson

Pacific Northwest National Laboratory

USA

HAIGH, Joanna

Imperial College London

UK

HAJIMA, Tomohiro

Japan Agency for Marine-Earth Science and Technology

Japan

HALL, Dorothy

National Aeronautics and Space

Administration, Goddard Space Flight Center

USA

HALLBERG, Robert

National Oceanic and Atmospheric Administration, Geophysical

Fluid Dynamics Laboratory

USA

HALLORAN, Paul

Met Office Hadley Centre

UK

HAN, Dawei

University of Bristol

UK

HANSEN, Bogi

Faroe Marine Research Institute

Faroe Islands

HAO, Aibing

Ministry of Land and Resources

China

HARGREAVES, Julia

Japan Agency for Marine-Earth

Science and Technology

Japan

HARNISCH, Jochen

KfW

Germany

HARPER, Joel

University of Montana

USA

HARTMANN, Jens

University of Hamburg

Germany

HASANEAN, Hosny

King Abdulaziz University

Saudi Arabia

HASSLER, Birgit

Cooperative Institute for Research

in Environmental Sciences

USA

HAWKINS, Ed

University of Reading

UK

HAYASAKA, Tadahiro

Tohoku University

Japan

HAYWOOD, Jim

Met Office Hadley Centre and

University of Exeter

UK

HEGERL, Gabriele

University of Edinburgh

UK

HEIM, Richard

National Oceanic and Atmospheric

Administration, National Climatic Data Center

USA

HEINTZENBERG, Jost

Leibniz Institute for Tropospheric Research Germany

HEINZE, Christoph

University of Bergen and Bjerknes Centre for Climate Research

Norway

HERTWICH, Edgar

Norwegian University of Science and Technology

Norway

HEWITSON, Bruce

University of Cape Town

South Africa

HIGGINS, Paul

American Meteorological Society

USA

HIRST, Anthony

CSIRO Marine and Atmospheric Research

Australia

HISDAL, Hege

Norwegian Water Resources and Energy Directorate Norway

HOCK, Regine

University of Alaska Fairbanks **USA**

HODSON, Dan

University of Reading

HOERLING. Martin

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

HÖGBERG, Peter

Swedish University of Agricultural Sciences Sweden

HOLGATE, Simon

National Oceanography Centre UK

HOLLIS. Christopher

GNS Science New Zealand

HOLTSLAG, Albert A.M.

Wageningen University Netherlands

HÖNISCH, Bärbel

Columbia University

USA

HOPE, Pandora

Bureau of Meteorology Australia

HOROWITZ, Larry

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory **USA**

HOURDIN, Frédéric

Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace France

HOUSE, Joanna

University of Bristol

HOUWELING. Sander

Utrecht University Netherlands

HOVLAND, Martin

University of Bergen Norway

1506

HOWARD, William

Australian National University Australia

HREN, Michael

University of Connecticut

USA

HU, Aixue

National Center for Atmospheric Research USA

HU, Zeng-Zhen

National Oceanic and Atmospheric Administration, National Weather Service

HUANG, Jianping

Lanzhou University

China

HUANG, Lei

National Climate Center, China Meteorological Administration China

HUANG, Lin

Environment Canada Canada

HUDSON, James

Desert Research Institute **USA**

HUGGEL, Christian

University of Zurich Switzerland

HUGHES, Malcolm

University of Arizona USA

HUNTER, John

Antarctic Climate and Ecosystems Cooperative Research Centre Australia

HURST, Dale

Cooperative Institute for Research in Environmental Sciences USA

HUYBRECHTS, Philippe

Vrije Universiteit Brussel Belgium

INCECIK, Selahattin

Istanbul Technical University Turkey

INGRAM, William

Met Office Hadley Centre and University of Oxford UK

INOUE, Toshiro

University of Tokyo

Japan

IRVINE, Peter

Institute for Advanced Sustainability Studies Germany

ISE, Takeshi

University of Hyogo

Japan

ISHII, Masao

Meteorological Research Institute Japan

ISHIZUKA, Shigehiro

Forestry and Forest Products Institute Japan

ITO, Akihiko

National Institute for Environmental Studies Japan

ITO, Takamitsu

Georgia Institute of Technology USA

ITOH, Kiminori

Yokohama National University Japan

IVERSEN, Trond

European Centre for Medium-Range Weather Forecasts, UK and Norwegian Meteorological Institute Norway

JACKSON, Laura

Met Office Hadley Centre UK

JACOBEIT, Jucundus

University of Augsburg Germany

JACOBSON, Mark Z.

Stanford University USA

JAENICKE, Ruprecht

Johannes Gutenberg University Mainz Germany

JAIN, Sharad K.

Indian Institute of Technology Roorkee India

JEONG, Myeong-Jae

Gangneung-Wonju National University Republic of Korea

JIANG, Dabang

Institute of Atmospheric Physics, Chinese Academy of Sciences China

JIANG, Jonathan

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

JOHANSSON, Daniel

Chalmers University of Technology Sweden

JOHN, Jasmin

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

JOHNS, Tim

Met Office Hadley Centre UK

JOHNSON, Jennifer

Stanford University USA

JOHNSON, Nathaniel

University of Hawaii USA

JONES, Christopher

Met Office Hadley Centre UK

JONES, Gareth S.

Met Office Hadley Centre UK

JONES, Philip

University of East Anglia UK

JOOS, Fortunat

University of Bern Switzerland

JOSEY, Simon

National Oceanography Centre UK

JOSHI, Manoj

University of East Anglia UK

JOUGHIN, Ian

University of Washington USA

JOUSSAUME, Sylvie

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

JOYCE, Terrence

Woods Hole Oceanographic Institution USA

JUCKES, Martin

Science and Technologies Facility Council UK

JYLHÄ, Kirsti

Finnish Meteorological Institute Finland

KÄÄB, Andreas

University of Oslo Norway

KAGEYAMA, Masa

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

KAHN, Brian

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

KAHN, Ralph

National Aeronautics and Space Administration, Goddard Space Flight Center USA

KALESCHKE, Lars

University of Hamburg Germany

KANAKIDOU, Maria

University of Crete Greece

KANAYA, Yugo

Japan Agency for Marine-Earth Science and Technology Japan

KANDEL, Robert

Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace France

KANG, Shichang

Institute of Tibetan Plateau Research, Chinese Academy of Sciences China

KANG, Sok Kuh

Korea Ocean Research and Development Institute Republic of Korea

KARLSSON, Per Erik

Swedish Environmental Research Institute Sweden

KAROLY, David

University of Melbourne Australia

KARPECHKO, Alexey

Finnish Meteorological Institute Finland

KATBEH-BADER, Nedal

Ministry of Environment Affairs Palestine

KATO, Etsushi

National Institute for Environmental Studies Japan

KAUFMANN, Robert

Boston University

USA

KAUPPINEN, Jyrki

University of Turku Finland

KAVANAGH, Christopher

International Atomic Energy Agency Monaco

KAWAI, Hiroyasu

Port and Airport Research Institute Japan

KAWAMIYA, Michio

Japan Agency for Marine-Earth Science and Technology Japan

KAWAMURA, Kenji

National Institute of Polar Research Japan

KAYE, Neil

Met Office Hadley Centre UK

KEELING, Ralph

Scripps Institution of Oceanography USA

KEEN, Richard

University of Colorado Boulder (retired) USA

KEENLYSIDE, Noel

University of Bergen and Bjerknes Centre for Climate Research Norway

KELLER, Charles

Los Alamos National Laboratory (retired) USA

KENDON, Elizabeth

Met Office Hadley Centre UK

KENNEDY, John

Met Office Hadley Centre

UK

KENT, Elizabeth

National Oceanography Centre

KESKIN, Siddik Sinan

Marmara University

Turkey

KHALIL, Mohammad Aslam Khan

Portland State University

USA

KHESHGI, Haroon

ExxonMobil Research and Engineering USA

KHMELINSKII, Igor

Universidade do Algarve

Portugal

KHOSRAWI, Farahnaz

Stockholm University

Sweden

KILADIS, George

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

KIM, Daehyun

Columbia University USA

KIM, Seong-Joong

Korea Polar Research Institute Republic of Korea

KINDLER, Pascal

University of Geneva Switzerland

KING. Andrew

University of New South Wales Australia

KING, Matt

University of Tasmania and Newcastle University Australia

KINTER, James

Institute of Global Environment and Society, Inc.
USA

KIRCHENGAST, Gottfried

University of Graz Austria

KIRKEVÅG, Alf

Norwegian Meteorological Institute Norway

KITOH, Akio

Meteorological Research Institute Japan

KJELLSTRÖM, Erik

Swedish Meteorological and Hydrological Institute Sweden

KLEIN TANK, Albert

Royal Netherlands Meteorological Institute Netherlands

KLINGER, Lee

USA

KLOTZBACH, Philip

Colorado State University USA

KNUTSON, Thomas

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

KNUTTI, Reto

ETH Zurich Switzerland

KOBASHI, Takuro

National Institute of Polar Research Japan

KOBAYASHI, Shigeki

Toyota Central R&D Labs., Inc. Japan

KOBAYASHI, Taiyo

Japan Agency for Marine-Earth Science and Technology Japan

KOH, Tieh-Yong

Nanyang Technological University Singapore

KÖHLER, Peter

Alfred Wegener Institute for Polar and Marine Research Germany

KOMEN, Gerbrand

Royal Netherlands Meteorological Institute and Utrecht University (retired) Netherlands

KONDO, Yutaka

University of Tokyo

Japan

KONFIRST, Matthew

American Association for the Advancement of Science and National Science Foundation USA

KONOVALOV, Vladimir

Russian Academy of Sciences Russian Federation

KOPP. Robert

Rutgers University USA

KORTELAINEN, Pirkko

Finnish Environment Institute Finland

KREASUWUN, Jiemjai

Chiang Mai University Thailand

KREIENKAMP, Frank

Climate & Environment Consulting Potsdam GmbH Germany

KRINNER, Gerhard

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

KRIPALANI, Ramesh

Indian Institute of Tropical Meteorology India

KRISTJÁNSSON, Jón Egill

University of Oslo Norway

KRIVOVA, Natalie

Max Planck Institute for Solar System Research Germany

KUHN, Nikolaus J.

University of Basel Switzerland

KULSHRESTHA, Umesh

Jawaharlal Nehru University India

KUSANO, Kanya

Nagoya University Japan

KUSUNOKI, Shoji

Meteorological Research Institute Japan

LAGERLOEF, Gary

Earth & Space Research

USA

LAKEN, Benjamin

Instituto de Astrofisíca de Canarias Spain

LAMBERT, Fabrice

Korea Institute of Ocean Science and Technology Republic of Korea

LAMBERT, Francis Hugo

University of Exeter

UK

LANDUYT, William

ExxonMobil Research and Engineering USA

LANE, Tracy

International Hydropower Association

LANG, Herbert

ETH Zurich Switzerland

LARTER, Robert

British Antarctic Survey

UK

LAW, Beverly

Oregon State University USA

LAW, Katharine

Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre Simon Laplace

France

LAWRENCE, Judy

Victoria University of Wellington New Zealand

LAWRENCE, Mark

Institute for Advanced Sustainability Studies Germany

LAXON, Seymour

University College London

UK

LE QUÉRÉ, Corinne

University of East Anglia

UK

LEAITCH, Warren Richard

Environment Canada

Canada

LECK, Caroline

Stockholm University

Sweden

LECLERCQ, Paul

Utrecht University Netherlands

LEE, Arthur

Chevron Corporation

USA

LEE, Jae Hak

Korea Institute of Ocean Science and Technology Republic of Korea

LEE, Sai Ming

Hong Kong Observatory China

LEE, Seoung Soo

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

LEE, Tsz-Cheung

Hong Kong Observatory China

LEGG, Sonya

Princeton University

USA

LEMKE, Peter

Alfred Wegener Institute for Polar and Marine Research Germany

LENAERTS, Jan

Utrecht University Netherlands

LENDERINK, Geert

Royal Netherlands Meteorological Institute Netherlands

LEROY, Suzanne

Brunel University

UK

LEVIN, Ingeborg

University of Heidelberg Germany

LEVITUS, Sydney

National Oceanic and Atmospheric Administration, National Oceanographic Data Center USA

LEVY, Julian

Levy Environmental Consulting, Ltd. USA

LEVY II, Hiram

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory (retired) USA

LEWIS, Nicholas

UK

LEWITT, Martin

American Geophysical Union USA

LI, Can

University of Maryland and National Aeronautics and Space Administration, Goddard Space Flight Center USA

LI, Jui-Lin (Frank)

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

LI, Qingxiang

National Meteorological Information Center, China Meteorological Administration China

LI, Shenggong

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences China

LI, Shuanglin

Institute of Atmospheric Physics, Chinese Academy of Sciences China

LI, Weiping

National Climate Center, China Meteorological Administration China

LI, Weiwei

University of Illinois USA

LI, Yueqing

Institute of Plateau Meteorology, China Meteorological Administration China

LI, Zhanqing

University of Maryland USA

LIAO, Hong

Institute of Atmospheric Physics, Chinese Academy of Sciences China LIN, Hai

Environment Canada

Canada

LIN, Jialin

Ohio State University

USA

LINDERHOLM, Hans W.

University of Gothenburg

Sweden

LINDSAY, Ron

University of Washington

USA

LIOU, Kuo-Nan

University of California Los Angeles

USA

LITTLE, Christopher

Princeton University

USA

LIU, Hongyan

Peking University

China

LIU, Ke Xiu

National Marine Data and

Information Service

China

LIU, Qiyong

China CDC

China

LIU, Shaw

Academia Sinica

Taiwan, China

LIU, Xiaohong

Pacific Northwest National Laboratory

USA

LJUNGQVIST, Fredrik

Stockholm University

Sweden

LLOYD, Philip

Cape Peninsula University of Technology

South Africa

LO, Yueh-Hsin

National Taiwan University

Taiwan, China

LOBELL, David

Stanford University

USA

LOEB, Norman

National Aeronautics and Space Administration, Langley Research Center

USA

LOEW. Alexander

Max Planck Institute for Meteorology

Germany

LOFGREN, Brent

National Oceanic and Atmospheric

Administration, Great Lakes

Environmental Research Laboratory USA

LOHMANN, Gerrit

Alfred Wegener Institute for

Polar and Marine Research

Germany

LOHMANN, Ulrike

ETH Zurich

Switzerland

LOOKYAT TAYLOR, Helen

World Science Data Base

USA

LÓPEZ MORENO, Juan Ignacio

Instituto Pirenaico de Ecología

Spain

LOUGH, Janice

Australian Institute of Marine Science

Australia

LUCE, Charles

U.S. Forest Service

USA

LÜTHI, Martin

FTH Zurich

Switzerland

LUNT, Daniel

University of Bristol

UK

LUO, Jing-Jia

Bureau of Meteorology

Australia

LUPO, Anthony

University of Missouri

USA

MA, Zhuguo

Institute of Atmospheric Physics, Chinese Academy of Sciences

China

China

MACCRACKEN, Michael

Climate Institute

USA

MACGREGOR, Joseph

University of Texas

USA

MÄDER, Claudia

Federal Environment Agency

Germany

MAGGI, Valter

University of Milano-Bicocca

Italy

MAHLSTEIN, Irina

Federal Office of Meteorology and

Climatology MeteoSwiss

Switzerland

MAHOWALD, Natalie

Cornell University

USA

MAKI, Takashi

Meteorological Research Institute

Japan

MANN, Michael

Pennsylvania State University

USA

MANNING, Martin

Victoria University of Wellington

New Zealand

MANZINI, Elisa

Max Planck Institute for Meteorology

Germany

MARAUN, Douglas

GFOMAR Helmholtz Centre

for Ocean Research

Germany

MARBAIX, Philippe

Université catholique de Louvain

Belgium

MARENGO, José

National Institute for Space Research

Brazil

MARINOVA, Dora

Curtin University

Australia

MARIOTTI, Annarita

National Oceanic and Atmospheric

Administration, Climate Program Office USA

MAROTZKE, Jochem

Max Planck Institute for Meteorology

Germany

MARSH, Robert

University of Southampton

UK

MARTIN, Eric

Météo-France

France

MARTIN, Gill

Met Office Hadley Centre

UK

MARTÍN MÍGUEZ, Belén

Centro Tecnológico del Mar

Spain

MARTIN-VIDE, Javier

Universitat de Barcelona

Spain

MARTY, Christoph

WSL Institute for Snow and Avalanche Research SLF

Switzerland

MASSONNET, François

Université catholique de Louvain Belgium

5

MATEI, Daniela

Max Planck Institute for Meteorology Germany

MATSUNO, Taroh

Japan Agency for Marine-Earth Science and Technology Japan

MATSUOKA, Kenichi

Norwegian Polar Institute

Norway

MATTHEWS, Paul

University of Nottingham UK

MAURITSEN, Thorsten

Max Planck Institute for Meteorology Germany

MAY, Wilhelm

Danish Meteorological Institute Denmark

MCELROY, Charles Thomas

York University Canada

MCINNES, Kathleen

CSIRO Marine and Atmospheric Research Australia

MCKAY, Nicholas

University of Arizona

USA

MCKITRICK, Ross

University of Guelph

Canada

MCLEAN, John

James Cook University

Australia

MEEHL, Gerald

National Center for Atmospheric Research USA

MEIER, Walter

National Snow and Ice Data Center USA

MEIYAPPAN, Prasanth

University of Illinois

USA

MELSOM, Arne

Norwegian Meteorological Institute Norway

MÉNDEZ, Carlos

Instituto Venezolano de Investigaciones Científicas Venezuela

MENGE, Duncan

Princeton University

USA

MENZEL, W. Paul

University of Wisconsin

MERCHANT, Christopher

University of Edinburgh

MEREDITH, Michael

British Antarctic Survey

MERLIS, Timothy

Princeton University and National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

MERRYFIELD, William

Environment Canada

Canada

MESINGER, Fedor

University of Maryland USA

METCALFE, Daniel

Swedish University of Agricultural Sciences Sweden

METELKA, Ladislav

Czech Hydrometeorological Institute Czech Republic

MEYSSIGNAC, Benoit

Laboratoire d'Etudes en Géophysique et Océanographie Spatiales France

MICKLEY, Loretta

Harvard University

USA

MIELIKÄINEN, Kari

Finnish Forest Research Institute Finland

MILLER, Benjamin R.

Cooperative Institute for Research in Environmental Sciences USA

MIMS, Forrest

Geronimo Creek Observatory USA

MIN, Seung-Ki

CSIRO Marine and Atmospheric Research Australia

MING, Jing

National Climate Center, China Meteorological Administration China

MING, Yi

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

MINSCHWANER, Kenneth

New Mexico Institute of Mining and Technology USA

MITCHELL, John

Met Office Hadley Centre UK

MOBERG, Anders

Stockholm University Sweden

MÖHLER, Ottmar

Karlsruhe Institute of Technology Germany

MOLINIÉ, Gilles

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

MONAHAN, Adam

University of Victoria

Canada

MONCKTON OF BRENCHLEY, Christopher

Science and Public Policy Institute IIK

MONTZKA, Stephen

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

MOORTHY, K. Krishna

Indian Space Research Organisation India

MOOSDORF, Nils

University of Hamburg Germany

MORGENSTERN, Olaf

National Institute of Water and Atmospheric Research New Zealand

MORI, Nobuhito

Kyoto University Japan

MORICE, Colin

Met Office Hadley Centre UK

MORRISON, Hugh

National Center for Atmospheric Research USA

MOTE, Philip

Oregon State University USA

MSADEK, Rym

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

MUDELSEE, Manfred

Alfred Wegener Institute for Polar and Marine Research Germany

MUELLER, Christoph

Justus Leibig University Giessen Germany

MÜLLER, Rolf

Forschungszentrum Jülich Germany

MÜLLER, Wolfgang

Max Planck Institute for Meteorology Germany

MULLER, Christian

Belgian Institute for Space Aeronomy Belgium

MURATA, Akihiko

Japan Agency for Marine-Earth Science and Technology Japan

MURPHY, Brad

Bureau of Meteorology Australia

MURPHY, Daniel

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

MUSCHELER, Raimund

Lund University Sweden

MUTHALAGU, Ravichandran

Indian National Centre for Ocean Information Services India

MYHRE, Gunnar

Center for International Climate and Environmental Research Oslo Norway

NABBEFELD, Birgit

DLR German Aerospace Center Germany

NAIK, Vaishali

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

NAKAEGAWA, Tosivuki

Meteorological Research Institute Japan

NAKAJIMA, Teruyuki

University of Tokyo Japan

NASSAR, Ray

Environment Canada Canada

NAUELS, Alexander

IPCC WGI TSU, University of Bern Switzerland

NEELIN, J. David

University of California Los Angeles USA

NESJE, Atle

University of Bergen and Bjerknes Centre for Climate Research Norway

NEU, Urs

Swiss Academy of Sciences Switzerland

NEVISON, Cynthia

University of Colorado Boulder USA

NEWBERY, David

University of Bern Switzerland

NEWBURY, Thomas Dunning

Amercian Association for the Advancement of Science and U.S. Department of the Interior (retired) USA

NICHOLLS, Robert

University of Southampton UK

NITSCHE, Helga

Deutscher Wetterdienst Germany

NODA, Akira

Japan Agency for Marine-Earth Science and Technology Japan

OBBARD, Jeffrey

National University of Singapore Singapore

OBROCHTA, Stephen

University of Tokyo Japan

O'CONNOR, Fiona

Met Office Hadley Centre UK

OGREN, John

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

OGURA. Tomoo

National Institute for Environmental Studies Japan

OHBA, Masamichi

Central Research Institute of Electric Power Industry Japan

OHMURA, Atsumu

ETH Zurich Switzerland

OHNEISER, Christian

Shell International B.V. Netherlands

O'ISHI, Ryouta

University of Tokyo

Japan

OLIVIÉ, Dirk

University of Oslo

Norway

OLIVIER, Jos

Netherlands Environmental Assessment Agency

Netherlands

OOUCHI, Kazuyoshi

Japan Agency for Marine-Earth

Science and Technology

Japan

OPPENHEIMER, Michael

Princeton University

USA

OREOPOULOS, Lazaros

National Aeronautics and Space

Administration, Goddard Space Flight Center

USA

ORLIC, Mirko

University of Zagreb

Croatia

ORLOWSKY, Boris

ETH Zurich

Switzerland

OSBORN, Timothy

University of East Anglia

UK

OSTROM, Nathaniel

Michigan State University

USA

OVERPECK, Jonathan

University of Arizona

USA

OWENS, John

3M Company

USA

PABÓN-CAICEDO, José Daniel

Universidad Nacional de Colombia

Colombia

PADMAN, Laurence

Earth & Space Research

USA

PALMER, Matthew

Met Office Hadley Centre

UK

PAN, Genxing

Nanjing Agricultural University

China

PANDEY, Dhananjai Kumar

National Centre for Antarctic

and Ocean Research

India

PARKER, Albert

University of Ballarat

Australia

PARKER, David

Met Office Hadley Centre

UK

PARRISH, David

National Oceanic and Atmospheric Administration, Earth System

Research Laboratory

USA

PASSCHIER, Sandra

Montclair State University

USA

PATTYN, Frank

Université libre de Bruxelles

Belgium

PAUL, Frank

University of Zurich

Switzerland

PAVAN, Valentina

Environmental Agency of Emilia-Romagna

Italy

PAVELSKY, Tamlin

University of North Carolina

USA

PAYNE, Antony

University of Bristol

UK

PAYNTER, David

National Oceanic and Atmospheric

Administration, Geophysical

Fluid Dynamics Laboratory

USA

PEARSON, David

Met Office Hadley Centre

UK

PEDERSEN, Jens Olaf Pepke

Technical University of Denmark

Denmark

PELEJERO, Carles

Institució Catalana de Recerca i Estudis Avançats and Institut de Ciències del Mar Spain

PELLIKKA, Hilkka

Finnish Meteorological Institute

Finland

PERLWITZ, Judith

Cooperative Institute for Research in Environmental Sciences

USA

PEROVICH, Donald

Cold Regions Research and Engineering Laboratory

USA

PETERS, Glen

Center for International Climate and Environmental Research Oslo

Norway

PETERS, Karsten

Monash University

Australia

PETIT, Michel

Conseil général de l'Economie, de l'Industrie,

de l'Energie et des Technologies

France

PFEFFER, W. Tad

University of Colorado Boulder

USA

PHILIPONA, Rolf

Federal Office of Meteorology and

Climatology MeteoSwiss

Switzerland

PIACENTINI, Rubén D.

Universidad Nacional de Rosario

Argentina

PINCUS, Robert

University of Colorado Boulder

PLANTON, Serge

Météo-France

France

USA

PLATTNER, Gian-Kasper

IPCC WGI TSU, University of Bern

Switzerland

PLUMMER, David

Environment Canada

Canada

POERTNER, Hans

Alfred Wegener Institute for Polar and Marine Research

Germany

POHLMANN, Holger

Max Planck Institute for Meteorology Germany

POITOU, Jean

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace and Société Française de Physique France

POKHREL, Samir

Indian Institute of Tropical Meteorology India

POLLACK, Henry

University of Michigan USA

POLONSKY, Alexander

Marine Hydrophysical Institute Ukraine

PONGRATZ, Julia

Max Planck Institute for Meteorology Germany

PORTMANN, Robert

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

POULTER, Benjamin

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

POWER, Scott

Bureau of Meteorology Australia

PRATHER, Michael

University of California Irvine USA

PRENTICE, Iain Colin

Macquarie University and Imperial College Australia

PRINN, Ronald

Massachusetts Institute of Technology USA

PUEYO, Salvador

Institut Català de Ciències del Clima Spain

QIAO, Bing

China Waterborne Transport Research Institute China

QUAAS, Johannes

University of Leipzig Germany

QUINN, Patricia

National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory USA

RABATEL, Antoine

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

RADIĆ, Valentina

University of British Columbia Canada

RADUNSKY, Klaus

Umweltbundesamt Austria

RAHAMAN, Hasibur

Indian National Centre for Ocean Information Services India

RAHIMZADEH, Fatemeh

Islamic Republic of Iran Meteorological Organization Iran

RAHMSTORF, Stefan

Potsdam Institute for Climate Impact Research Germany

RAIBLE, Christoph

University of Bern Switzerland

RÄISÄNEN, Jouni

University of Helsinki Finland

RÄISÄNEN, Petri

Finnish Meteorological Institute Finland

RAJEEVAN, Madhavan Nair

Government of India, Ministry of Earth Sciences India

RAMASWAMY, Venkatachalam

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

RAMSTEIN, Gilles

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

RANDALL, David

Colorado State University USA

RAPER, Sarah

Manchester Metropolitan University UK

RASCH, Philip

Pacific Northwest National Laboratory USA

RAUPACH, Michael

CSIRO Marine and Atmospheric Research Australia

RAVISHANKARA, A.R.

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

RAWLS, Alec

USA

RAYNER, Nick

Met Office Hadley Centre UK

RAYNER, Peter

University of Melbourne Australia

REAY, David

University of Edinburgh UK

REIS, Stefan

Centre for Ecology & Hydrology IJK

REISINGER, Andy

New Zealand Agricultural GHG Research Centre New Zealand

REISMAN, John P.

OSS Foundation USA

REMEDIOS, John

University of Leicester UK

REMER, Lorraine

National Aeronautics and Space Administration, Goddard Space Flight Center USA

REN. Guovu

National Climate Center, China Meteorological Administration China

RENWICK, James

Victoria University of Wellington

New Zealand

REUTEN, Christian

RWDI AIR Inc.

Canada

RIAHI, Keywan

International Institute for Applied Systems Analysis

Austria

RIBES. Aurélien

Météo-France

France

RIDDICK, Stuart

Cornell University

USA

RIDLEY, Jeff

Met Office Hadley Centre

UK

RIGNOT, Eric

University of California Irvine USA

RIGOR, Ignatius

University of Washington

USA

RINGEVAL, Bruno

Utrecht University

Netherlands

RITZ, Christoph

Swiss Academy of Sciences

Switzerland

RIVERA, Andrés

Centro de Estudios Científicos

Chile

ROBAA, S.M.

Cairo University

Egypt

ROBERTS, Chris

Met Office Hadley Centre

UK

ROBERTSON, Iain

Swansea University

UK

ROBOCK, Alan

Rutgers University

USA

ROBSON, Jonathan

University of Reading

UK

RODHE, Henning

Stockholm University

Sweden

ROGELJ, Joeri

ETH Zurich

Switzerland

ROHLING, Eelco Johan

National Oceanography Centre

UK

ROJAS, Maisa

Universidad de Chile

Chile

ROMANOVSKY, Vladimir

University of Alaska Fairbanks

USA

RONCHAIL, Josyane

Laboratoire d'Océanographie et du Climat,

Institut Pierre Simon Laplace

France

ROSEN, Sergiu Dov

Israel Oceanographic and

Limnological Research

Israel

ROSENFELD, Daniel

Hebrew University of Jerusalem

Israel

ROSENLOF, Karen

National Oceanic and Atmospheric

Administration, Earth System

Research Laboratory

USA

ROTSTAYN, Leon

CSIRO Marine and Atmospheric Research

Australia

ROTT, Helmut

University of Innsbruck

Austria

ROWELL, David

Met Office Hadley Centre

UK

ROY, Indrani

University of Exeter

UK

ROY, Shouraseni

University of Miami

USA

RUMMUKAINEN, Markku

Swedish Meteorological and Hydrological

Institute and Lund University

Sweden

RUPP. David

Oregon State University

USA

RUSSELL, Andrew

Brunel University

UK

RUTI, Paolo Michele

Italian National Agency for New Technologies, Energy and Sustainable

Economic Development

Italy

SAHU, Lokesh Kumar

Physical Research Laboratory

India

SAKAGUCHI, Koichi

University of Arizona

USA

SALAS Y MELIA, David

Météo-France

France

SALZMANN, Nadine

University of Zurich and University of Fribourg

Switzerland

SAMANTA, Arindam

Atmospheric and Environmental Research USA

SANCHEZ GOÑI. Maria Fernanda

Université Bordeaux 1

France

SANDERSON, Benjamin

National Center for Atmospheric Research

SANYAL, Swarnali

University of Illinois

USA

USA

SAROFIM, Marcus

U.S. Environmental Protection Agency

SATHEESH, S.K.

Indian Institute of Science

India

USA

SATOH, Masaki

University of Tokyo

Japan

SAUCHYN, David

University of Regina

Canada

SAULO, Celeste

Universidad de Buenos Aires

Argentina

SAUNDERS, Roger

Met Office Hadley Centre

UK

SAUSEN, Robert

DLR German Aerospace Center

Germany

SAVOLAINEN, Ilkka

VTT Technical Research Centre of Finland Finland

SCAIFE, Adam

Met Office Hadley Centre

UK

SCHMID, Beat

Pacific Northwest National Laboratory USA

SCHMIDT, Gavin

National Aeronautics and Space Administration, Goddard Institute for Space Studies USA

SCHNEEBELI, Martin

WSL Institute for Snow and Avalanche Research SLF Switzerland

SCHNEIDER, Johannes

Max Planck Institute for Chemistry Germany

SCHOENWIESE, Christian-D.

Goethe University Germany

SCHOLES, Robert

Council for Scientific and Industrial Research South Africa

SCHRAMA, Ernst

Delft University of Technology Netherlands

SCHULZ. Michael

Norwegian Meteorological Institute Norway

SCHUMANN, Ulrich

DLR German Aerospace Center Germany

SCHUSTER, Gregory

National Aeronautics and Space Administration, Langley Research Center USA

SCHUUR, Edward

University of Florida

USA

SCHWARTZ, Stephen E.

Brookhaven National Laboratory

SCHWARZKOPF, M. Daniel

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

SCHWEIGER, Axel

University of Washington USA

SEDLÁČEK, Jan

ETH Zurich Switzerland

SEHAT KASHANI, Saviz

Islamic Azad University Iran

SEIBERT, Petra

University of Vienna

Austria

SEIDEL, Dian

National Oceanic and Atmospheric Administration, Air Resources Laboratory

SELVARAJ, Kandasamy

Xiamen University

China

SEN, Omer L.

Istanbul Technical University Turkey

SENEVIRATNE, Sonia

ETH Zurich Switzerland

SENSOY, Serhat

Turkish State Meteorological Service Turkey

SENTMAN, Lori

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

SERPIL, Yaäžan

Turkish State Meteorological Service Turkey

SETH, Anji

University of Connecticut USA

SEXTON, David

Met Office Hadley Centre

UK

SHAO, Andrew

University of Washington

USA

SHAO, XueMei

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences China

SHELL, Karen

Oregon State University USA

SHERWIN, Toby

Scottish Association for Marine Science UK

SHERWOOD, Steven

University of New South Wales Australia

SHEVLIAKOVA, Elena

Princeton University USA

SHI, Zongbo

University of Birmingham UK

SHIBATA, Kiyotaka

Meteorological Research Institute Japan

SHINDELL, Drew

National Aeronautics and Space Administration, Goddard Institute for Space Studies USA

SHINE, Keith

University of Reading UK

SHIOGAMA, Hideo

National Institute for Environmental Studies Japan

SHKOLNIK, Igor

Voeikov Main Geophysical Observatory Russian Federation

SHMAKIN, Andrey

Russian Academy of Sciences Russian Federation

SHUMAN, Bryan

University of Wyoming

USA

SICRE, Marie-Alexandrine

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

SIDDALL, Mark

University of Bristol

UK

SIEGLE, Eduardo

Universidade de São Paulo

Brazil

SIEVERING, Herman

National Oceanic and Atmospheric Administration, Earth System Research Laboratory and University of Colorado Boulder USA

SILLMANN, Jana

Environment Canada

Canada

SIMMONDS, Ian

University of Melbourne

Australia

SIMMONS, Adrian

European Centre for Medium-Range Weather Forecasts

UK

SINGER, S. Fred

University of Virginia

USA

SLANGEN, Aimée

Utrecht University Netherlands

SMEDSRUD. Lars Henrik

Bjerknes Centre for Climate Research Norway

SMITH, Doug

Met Office Hadley Centre UK

SMITH, Ian

CSIRO Marine and Atmospheric Research Australia

SMITH, Leonard

London School of Economics and Political Science

UK

SMITH, Sharon

Natural Resources Canada Canada

SMITH, Stephen

Committee on Climate Change

UK

SMITH, Stephen G.G.

UK

SMITH, Steven

Pacific Northwest National Laboratory

SNIDERMAN, Kale

University of Melbourne

Australia

SOLOMINA, Olga

Russian Academy of Sciences

Russian Federation

SOLOMON, Susan

Massachusetts Institute of Technology USA

SOMERVILLE, Richard

Scripps Institution of Oceanography USA

SONG, Shaojie

Massachusetts Institute of Technology USA

SPAHNI, Renato

University of Bern Switzerland

SPARRENBOM, Charlotte

Lund University Sweden

SPARROW, Michael

Scientific Committee on Antarctic Research UK

SPORYSHEV, Petr

Voeikov Main Geophysical Observatory Russian Federation

SRIKANTHAN, Ramachandran

Physical Research Laboratory India

SRIVER, Ryan

University of Illinois

USA

SROKOSZ, Meric

National Oceanography Centre UK

STAGER, Jay Curt

Paul Smith's College

USA

STAHLE, David

University of Arkansas

USA

STAINFORTH, David

London School of Economics and Political Science UK

STEBLER, Oliver

ETH Zurich Switzerland

STEIG, Eric

University of Washington

USA

STEINFELDT, Reiner

University of Bremen

Germany

STENDEL, Martin

Danish Meteorological Institute

Denmark

STEPEK, Andrew

Royal Netherlands Meteorological Institute Netherlands

STEPHENS, Graeme

National Aeronautics and Space Administration, Jet Propulsion Laboratory

STEPHENSON, David

University of Exeter

UK

STERL, Andreas

Royal Netherlands Meteorological Institute Netherlands

STERN, Harry

University of Washington USA

STEVENSON, David

University of Edinburgh

STEWART, Ronald

University of Manitoba Canada

STIER, Philip

University of Oxford

UK

STÖBER, Uwe

University of Bremen Germany

STOCKDALE, Timothy

European Centre for Medium-Range Weather Forecasts UK

STOCKER, Benjamin

University of Bern Switzerland

STOCKER, Thomas F.

Co-Chair IPCC WGI, University of Bern Switzerland

STONE, Dáithí

Lawrence Berkeley National Laboratory USA

STONE, Reynold

University of the West Indies Trinidad and Tobago

STOTT, Peter

Met Office Hadley Centre UK

STOUFFER, Ronald

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

STOY, Paul

Montana State University USA

STRAUSS, Benjamin

Climate Central USA

STUBENRAUCH, Claudia

Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace France

STUMM, Dorothea

International Centre for Integrated Mountain Development Nepal

SU, Hui

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

SUBRAMANIAN, Aneesh

Scripps Institution of Oceanography USA

SUGI, Masato

Japan Agency for Marine-Earth Science and Technology Japan

SUGIYAMA, Masahiro

Central Research Institute of Electric Power Industry Japan

SUN, Jiangi

Institute of Atmospheric Physics, Chinese Academy of Sciences China

SUN, Junying

Chinese Academy of Meteorological Sciences, China Meteorological Administration China

SUNDQUIST, Eric

U.S. Geological Survey USA

SUTTON, Rowan

University of Reading

UK

SVENSSON, Gunilla

Stockholm University

Sweden

SWEENEY, Conor

University College Dublin Ireland

SWIETLICKI, Erik

Lund University Sweden

SWINGEDOUW, Didier

Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace France

TACHIIRI, Kaoru

Japan Agency for Marine-Earth Science and Technology Japan

TAKAHASHI, Ken

Instituto Geofísico del Perú

Peru

TAKAHASHI, Kiyoshi

National Institute for Environmental Studies Japan

TAKAYABU, Izuru

Meteorological Research Institute Japan

TAKAYABU, Yukari

University of Tokyo

Japan

TAKEMURA, Toshihiko

Kyushu University

Japan

TALARICO, Franco

University of Siena

Italy

TALLAKSEN, Lena M.

University of Oslo

Norway

TAMISIEA, Mark

National Oceanography Centre UK

TANAKA, Hiroshi

University of Tsukuba

Japan

TANAKA, Katsumasa

ETH Zurich Switzerland

TANG, Qi

Cornell University

USA

TAPIADOR, Francisco J.

Universidad de Castilla-La Mancha Spain

TARASOV, Lev

Memorial University of Newfoundland Canada

TAYLOR, Jeffrey

National Ecological Observatory Network USA

TELFORD, Richard

University of Bergen

Norway

TERRAY, Laurent

Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique France

TETT, Simon

University of Edinburgh UK

THIELEN, Dirk

Instituto Venezolano de Investigaciones Científicas Venezuela

THOMAS, Robert

SIGMA Space USA

THOMASON, Larry

National Aeronautics and Space Administration, Langley Research Center USA

THOMPSON, Erica

London School of Economics and Political Science UK

THOMPSON, Rona

Norwegian Institute for Air Research Norway

THORNE, Peter

National Oceanic and Atmospheric Administration, National Climatic Data Center USA

TIAN, Jian

University of Illinois

USA

TIGNOR, Melinda

IPCC WGI TSU, University of Bern Switzerland

TILYA, Faustine Fidelis

Tanzania Meteorological Agency United Republic Of Tanzania

TITUS, James G.

U.S. Environmental Protection Agency USA

TKALICH, Pavel

National University of Singapore Singapore

TOKINAGA, Hiroki

University of Hawaii

USA

TOMASEK, Bradley

University of Illinois

USA

TOMOZEIU, Rodica

Environmental Agency of Emilia-Romagna Italy

TONITTO, Christina

Cornell University

USA

TOTTERDELL, Ian

Met Office Hadley Centre

UK

TRAINER, Michael

National Oceanic and Atmospheric Administration, Earth System Research Laboratory

USA

TRANVIK, Lars

Uppsala University

Sweden

TRENBERTH, Kevin

National Center for Atmospheric Research USA

TROUET, Valerie

University of Arizona

USA

TSUSHIMA, Yoko

Met Office Hadley Centre

UK

TSUTSUI, Junichi

Central Research Institute of Electric Power Industry Japan

TURCQ, Bruno

Institut de Recherche pour le Développement France

TURNER, Andrew

University of Reading

UK

TZEDAKIS, Chronis

University College London

UK

UNNINAYAR, Sushel

National Aeronautics and Space Administration, Goddard Space Flight Center USA

URREGO, Dunia H.

Université Bordeaux 1

France

VAN DEN HURK, Bart

Royal Netherlands Meteorological Institute Netherlands

VAN DER LINDEN, Paul

Met Office Hadley Centre UK

VAN DER WERF, Guido

VU University Amsterdam Netherlands

VAN HUISSTEDEN, Ko

VU University Amsterdam Netherlands

ivetilellallas

VAN KESTEREN, Line

IPCC Synthesis Report TSU

Netherlands

VAN NOIJE, Twan

Royal Netherlands Meteorological Institute Netherlands

VAN OLDENBORGH, Geert Jan

Royal Netherlands Meteorological Institute Netherlands

VAN OMMEN, Tasman

Australian Antarctic Division Australia

VAN VELTHOVEN, Peter

Royal Netherlands Meteorological Institute Netherlands

VAN WEELE, Michiel

Royal Netherlands Meteorological Institute Netherlands

VAN YPERSELE, Jean-Pascal

Université catholique de Louvain Belgium

beigiuiii

VANAGS, Andreis

The Space Exploration Society USA

VAQUERO, José Manuel

Universidad de Extremadura Spain

VAUGHAN, David

British Antarctic Survey UK

VAUGHAN, Naomi

University of East Anglia UK

VELDERS, Guus

National Institute for Public Health and the Environment Netherlands

VERHEGGEN, Bart

ECN Energy Research Institute of the Netherlands Netherlands

VERHOEF, Anne

University of Reading UK

VERLEYEN, Elie

Ghent University Belgium

VIDAL, Jean-Philippe

Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture France

VIGNATI, Elisabetta

European Commission Joint Research Centre Italy

VINITNANTHARAT, Soydoa

King Mongkut's University of Technology Thonburi Thailand

VISSER, Hans

PBL Netherlands Environmental Assessment Agency Netherlands

VOIGT. Thomas

Federal Environment Agency Germany

VOLLMER, Martin

Swiss Federal Laboratories for Materials Science and Technology EMPA Switzerland

VON SCHUCKMANN, Karina

Institut Français de Recherche pour l'Exploitation de la Mer France

WAGNON, Patrick

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

WAHL, Eugene

National Oceanic and Atmospheric Administration, National Climatic Data Center USA

WAHL, Terje

Norwegian Space Centre Norway

WAHL, Thomas

University of Siegen Germany

WALISER, Duane

National Aeronautics and Space Administration, Jet Propulsion Laboratory USA

WALLINGTON, Timothy

Ford Motor Company USA

WALTER, Andreas

Deutscher Wetterdienst Germany

WANG, Bin

Institute of Atmospheric Physics, Chinese Academy of Sciences and Tsinghua University China

WANG, Chien

Massachusetts Institute of Technology USA

WANG, Dongxiao

South China Sea Institute of Oceanology, Chinese Academy of Sciences China

WANG, Hailong

Pacific Northwest National Laboratory USA

WANG, Junye

Rothamsted Research UK

WANG, Kaicun

Beijing Normal University China

WANG, Minghuai

Pacific Northwest National Laboratory USA

WANG, Pinxian

Tongji University China

WANG, Shaowu

Peking University China

WANG, Tijian

Nanjing University China

WANG, Ting

Lehigh University USA

WANG, Xiaolan

Environment Canada

Canada

WANG, Xuemei

Sun Yat-sen University China

CIIIIIa

WANG, Yingping

CSIRO Marine and Atmospheric Research Australia

WANG, Yongguang

National Climate Center, China Meteorological Administration China

WANG, Zhaomin

Nanjing University of Information Science and Technology China

WANLISS, James

Presbyterian College USA

WANNER, Heinz

University of Bern Switzerland

WATERLAND, Robert

E. I. du Pont de Nemours & Co. Inc. USA

WATSON, Phil

NSW Government Office of Environment and Heritage Australia

WATSON, Thomas

Australia

WATTERSON, Ian

CSIRO Marine and Atmospheric Research Australia

WEBB, David

National Oceanography Centre UK

WEBB, Mark

Met Office Hadley Centre UK

WEBB, Robert

National Oceanic and Atmospheric Administration, Earth System Research Laboratory USA

WEEDON, Graham

Met Office Hadley Centre UK

WEISHEIMER, Antje

European Centre for Medium-Range Weather Forecasts UK

WEISS, Jérôme

Laboratoire de Glaciologie et Géophysique de l'Environnement, Université Joseph Fourier France

WEISSE, Ralf

Helmholtz-Zentrum Geesthacht Germany

WENDISCH, Manfred

University of Leipzig Germany

WESTRA, Seth

University of Adelaide Australia

WEYHENMEYER, Gesa

Uppsala University Sweden

WHETTON, Penny

CSIRO Marine and Atmospheric Research Australia

WHITE, Neil

CSIRO Marine and Atmospheric Research Australia

WIELICKI, Bruce

National Aeronautics and Space Administration, Langley Research Center USA

WILD, Oliver

Lancaster University UK

WILLETT, Kate

Met Office Hadley Centre

WILLIAMS, Keith

Met Office Hadley Centre

WILLIAMS, Paul

University of Reading

WILLIAMS, Richard G.

Liverpool University

UK

WILLIAMS, S. Jeffress

U.S. Geological Survey USA

WILSON, Rob

University of St Andrews

WITTENBERG, Andrew

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

WOLFF, Eric

British Antarctic Survey UK

WOOD, Richard

Met Office Hadley Centre UK

WOOD, Robert

University of Washington **USA**

WOODS. Thomas

University of Colorado Boulder **USA**

WOODWORTH, Philip

National Oceanography Centre UK

WORDEN, Helen

National Center for Atmospheric Research **USA**

WRATT, David

National Institute of Water and Atmospheric Research **New Zealand**

WU, Tonghua

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences China

WURZLER, Sabine

Landesamt für Natur, Umwelt und Verbraucherschutz NRW Germany

XIA, Chaozong

State Forestry Administration China

XIA, Yu

IPCC WGI TSU, University of Bern Switzerland

XIE, Shang-Ping

Scripps Institution of Oceanography

XU, Chong-Yu

University of Oslo

Norway

XU. Kuan-Man

National Aeronautics and Space Administration, Langley Research Center USA

XU, Xiaobin

Chinese Academy of Meteorological Sciences, China Meteorological Administration China

XU, Ying

National Climate Center, China Meteorological Administration China

XU, Yongfu

Institute of Atmospheric Physics, Chinese Academy of Sciences China

YABI, Ibouraïma

Université d'Abomey Calavi Benin

YASUNARI, Tetsuzo

Nagoya University Japan

YDE, Jacob Clement

Sogn og Fjordane University College Norway

YOKOUCHI, Yoko

National Institute for Environmental Studies Japan

YOSHIMORI, Masakazu

University of Tokyo Japan

YU, Rucong

China Meteorological Administration China

YU, Zicheng

Lehigh University

USA

YUKIMOTO, Seiji

Meteorological Research Institute Japan

ZAEHLE, Sönke

Max Planck Institute for Biogeochemistry Germany

ZAHN, Matthias

University of Reading

UK

ZAPPA, Giuseppe

University of Reading UK

ZEMP, Michael

University of Zurich Switzerland

ZENG, Xubin

University of Arizona

USA

ZHANG, Chengyi

National Climate Center, China Meteorological Administration China

ZHANG, De-er

National Climate Center, China **Meteorological Administration** China

ZHANG, Gan

University of Illinois USA

ZHANG, Guang

Scripps Institution of Oceanography USA

ZHANG, Hua

National Climate Center, China Meteorological Administration China

ZHANG, Rong

National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

ZHANG, Tianyu

National Marine Environmental **Forecasting Center** China

ZHANG, Xiangdong

University of Alaska Fairbanks **USA**

AVI

ZHANG, Xuebin

CSIRO Marine and Atmospheric Research Australia

ZHANG, Xuebin

Environment Canada

Canada

ZHAO, Xuepeng (Tom)

National Oceanic and Atmospheric Administration, National Climatic Data Center USA

ZHAO, Zong-Ci

National Climate Center, China Meteorological Administration China

ZHENG, Jingyun

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences China

ZHOU, Guangsheng

Chinese Academy of Meteorological Sciences, China Meteorological Administration China

ZHOU, Limin

East China Normal University China

ZHOU, Tianjun

Institute of Atmospheric Physics, Chinese Academy of Sciences China

ZHU. Bin

Nanjing University of Information Science and Technology China

ZICKFELD, Kirsten

Simon Fraser University Canada

ZORITA, Eduardo

Helmholtz-Zentrum Geesthacht Germany

ZUIDEMA, Paquita

University of Miami USA

ZUO, Juncheng

HoHai University China

ZWEIFEL, Roman

Swiss Federal Institute for Forest, Snow and Landscape Research WSL Switzerland

ZWIERS, Francis

University of Victoria Canada

Index

This index should be cited as:

IPCC, 2013: Index. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Note: * indicates the term also appears in the Glossary (Annex III). Bold page numbers indicate page spans for entire chapters. Italicized page numbers denote tables, figures and boxed material.

Α

Abrupt climate change*, 70-72, 151, 386-387, 432-435, 1114-1119 abrupt glacial events, 483 paleoclimate*, 386-387, 432-435, 434 permafrost thawing and, 530-531 projections, 88, 1005, 1033, 1114-1119 summary, 1005, 1115 Aerosols*, 151, 174-180, 571-657 absorption on snow and ice, 574, 617-618, 685, 685 aerosol-climate feedbacks, 574, 605-606 aerosol-cloud interactions*, 127, 573, 578, 606-614, 607, 618-621, 623, 625-626, 683-685 aerosol optical depth (AOD), 161, 174-176, 176, 179, 596-599, 599, 692, 757, 794-795, 794-795, 1429-1430 aerosol-radiation interactions*, 574, 576, 578, 604-605, 614-618, 615, 617, 622, 682-683, 683 aviation contrails, 574, 592-594, 686 carbonaceous*, 606 climate relevant properties, 573, 602-604, 622-623 cloud condensation nuclei (CCN)*, 603-604, 609, composition and mixing state, 602-603 effective radiative forcing (ERF), 574, 576-578, 577-578, 614-624, 619-621, 1404-1409 feedbacks, 574, 576-578, 577, 605-606 formation and types, 595 general concepts, 595-606, 595, 597, 622-623 glaciation effect, 578 in situ surface measurements, 176-180, 177 lifetime effects, 578, 609-610 mineral dust (MDA), 394, 600, 605, 617 models, 16, 608-609, 744, 752, 757, 794-795 new terminology, 578, 578 observations, 161, 175, 595-599, 596, 598 organic*, 1048-1050, 1052, 1419, 1428 paleoclimate*, 394 precipitation effects, 624-627 projections, 1000-1001, 1002-1003, 1007-1008, 1048-1050, 1052 radiative forcing*, 13-14, 14, 127, 186, 574, 576-578, 577, 614-621, 662, 675, 682-686, 1007, 1048-1050, 1052, 1404-1409 sea spray, 599-601, 605 size and optical properties, 603 sources, 599-601 thermodynamic effect, 578 volcanic aerosols, 14, 662, 691-693

climate indices, changes in, 211-212 projections, 106, 1281-1282, 1288, 1358-1365 Air quality, 684-685, 955, 1001-1002 climate-driven changes, 999-1000, 1005-1006 extreme weather and, 1005 projections, 24, 88-89, 957, 996-1004 Aircraft. See Aviation Albedo*, 126 cloud albedo effect, 578, 610, 1048-1050 snow, 321, 358, 359, 757 surface, 628, 662, 686-687, 687, 819 urban, 687 Altimetry*, 286, 287, 348-349 Ammonia, 1418 Ammonium, 605-606 Annular modes*, 233-235, 900-901, 900, 1243-1246 projections, 108, 1220, 1288-1289 Antarctic ice sheet, 9, 25, 29, 137, 320, 351-353, 909 dynamical change, 1172-1174 ice loss, 351-353, 352-353, 367, 381-382 irreversible changes, 71-72, 356, 1174 mass balance*, 348, 1139, 1170-1171 models, 753, 1171 observed changes, 351-353, 352-353 paleoclimate*, 387, 428-431, 1174 polar amplification, 397 sea level equivalent, 320, 321, 352-354 sea level rise and, 1139, 1154-1155, 1170-1176, 1177-1179 1182 West Antarctic (WAIS), 320, 332, 349, 352-354, 357, 1174, 1175 Antarctic region, 151, 939, 1276-1277 bottom water, 279-280 circulation, 284 ice shelves, 320, 353, 367 oceans, 279-280 paleoclimate*, 387, 420, 459-460 polar amplification, 385, 396-398 projections, 106, 1277, 1285, 1289, 1390-1393 Weddell Sea, 280 Antarctic sea ice, 9, 25, 69, 319, 330-335 changes in, 333-334, 368, 906-909, 908, 931 drift, 332 extent and concentration, 330, 331, 332 models, 787-790, 787-789 projections, 1089, 1092 seasonality and trends, 332-335 Anthropogenic climate change*. See Detection and attribution of climate change Aragonite, 94-95, 533 Arctic region anthropogenic influence, 19, 956 climate projections, 956, 1031, 1062-1064 ocean salinity, 271-273 polar amplification, 385, 396-398, 1031, 1062projections, 106, 1257-1258, 1278, 1288, 1322temperature, 9, 10, 20, 931, 956, 1062-1064, 1257-1258, 1278 Arctic sea ice, 9, 10, 69, 136-137, 319, 323-330 attribution of changes, 19, ,870, 906-909, 908, 931, 938

```
changes in, 333-334, 367, 368
   decadal trends, 329-330
   drift, 328-329
   extent and concentration, 324-326, 325, 326
   irreversible changes, 1115, 1117-1118
   models, 16, 18, 744, 787-790, 787-789
   projections, 24-25, 956, 1032, 1087-1092, 1089-
   salinity effects on, 271-273
   seasonality, 329
   summary, 9, 10, 319, 367
   thickness and volume, 319, 327-328, 328
Asia
   climate indices, changes in, 211-212
   precipitation extremes, 211-212
   projections, 106, 1268-1273, 1278, 1282-1284,
   1288-1289, 1366-1381
Asian-Australian monsoon, 1227-1232, 1230-1231
Atlantic Meridional Mode (AMM), 802, 1224
Atlantic Meridional Overturning Circulation
    (AMOC), 8, 282-284, 782-783
   irreversibility and, 70, 433-435, 1115-1116, 1115
   paleoclimate*, 386-387, 433-435, 456
   projections, 24, 956, 973-974, 995, 1033, 1094-
   1095
   variability, 801, 802, 806
Atlantic Multi-decadal Oscillation/Variability
   (AMO/AMV)*, 230, 233-235, 801, 802, 806, 869,
   1254-1255
   impacts, 1224
   projections, 108, 971-973, 972, 1220
Atlantic Niño, 233, 803, 806, 1224, 1239-1240
Atlantic Ocean
   carbon storage, 495
   hurricanes, 809
   modes, 1239-1240
   salinity, 271, 280
   temperature, 280
   tropical, models, 787
   variability, 233-235
   water mass properties, 279
Atlantic Ocean Multidecadal Variability, 233-234
Atmosphere*, 5, 159-254
   free*, 197-198, 197-200
   global reanalyses*, 185-186
   models, 144, 746, 747, 748-750, 756-757, 760-777
   observations, 5, 6, 159-254
   projections, 19-24, 28, 980-993
   radiation budget, 161, 180-186
   summary of observations, 5, 130, 161-163
   temperature, 4-5, 6, 66-68, 161-162, 187-201, 984
   See also Hydrological cycle; Temperature
Atmospheric chemistry, 669-675
Atmospheric circulation, 163, 223-232, 899-901,
   899-900
   attribution of changes, 871, 899-901, 899-900,
   geopotential height, 223, 223, 226
   jets, storm tracks and weather types, 229-230
   projections, 88, 90, 956, 972-975, 988-990, 989-
   990, 1032, 1071-1074, 1071-1072
```

sea level pressure (SLP), 223-224, 223-224, 1071-

1072, 1071

See also specific aerosols Africa, 1266-1268, 1267

African monsoon, 1234, 1235

stratospheric circulation, 230	permafrost*, 480, 526-528	observations, 50-52
surface wind speed, 224-226, 225	sinks*, 93, 468, 470-472, 471, 480, 495-503, 503,	observed changes, 11-12, 12, 132-134, 132, 161
teleconnections*, 233, 805, 1224, 1243, 1243	519-523, 538-539, <i>543</i> , 551-552	165-167, <i>166</i> , 467
tropical circulation, 226-230, 899-900, 989-990,	total, 178	observed changes, last millennium, 485-486, 486
989, 1073	transient climate response to emissions (TCRE),	ocean absorption of, 11, 12, 26-27, 291-293, 295
upper-air winds, 226	16-17, 1108-1109	<i>300</i> , 300, 472, <i>472-473</i> , 495-499
variability in, 163, 230-232, <i>231-235</i>	See also Black carbon	ocean sink for, 495-499, 496, 519-520
Atmospheric composition, 126, 161, 165-180	Carbon cycle*, 11-12, <i>96-97</i> , 470-480, 502-504	paleoclimate*, 385, 391-394, 399-400, 400, 457
aerosols*, 161, 174-180, 576	before fossil fuel era, 480-486	<i>459-460</i> , 468, 483-484, <i>483</i>
clouds, 576	carbon removal/storage techniques, 469, 546-552,	permafrost*, 27, <i>530-531</i>
gases, 161, 165-170, <i>166</i>	547	projections, 19, 26-27, 27-28, 28, 148, 156, 468
models, 17-18	climate-carbon cycle feedback*, 514-523, <i>515</i> ,	514-528, <i>524</i> , 662, <i>1048-1050</i> , 1096-1097, <i>1097</i>
observed changes, 165-180	<i>516-518</i> , 551-552	1422
projections, 996-1004	in climate models, 16, 468, <i>516-518</i> , 751-752, 792-	proxy methods and data, 394, 457
See also specific constituents	794	radiative forcing*, 13, <i>14</i> , 126, 165, 661, 676-678
Attribution of climate change. See Detection and	commitments, 543-546	678, 1048-1050, 1404-1409, 1433
attribution	feedbacks, 26, 475-480, 477-478, 514-523, <i>515</i> -	rapid adjustments* to, 590
Australia and New Zealand, 106, 1273-1275, 1274,	518, 520	regional budgets, 503
1284, 1289, 1382-1385	geoengineering and, 469, 546-552	summary, 11-12, <i>12</i>
monsoon, <i>1230-1231</i> , 1232	global, 470-473, <i>471</i>	temperature and, 398-399
Aviation contrails/cloud effect, 574, 592-594, 686	long-term, 543-546, <i>543</i>	timescale of persistence in atmosphere, 469
	models, 502-504, 514-528, <i>516-518</i> , <i>520-522</i> ,	Carbon Dioxide Removal (CDR)*, 29, 469, 546-551
D	524-529, 744, 751-752, 757, 792-794, 793-794	547
В	nitrogen cycle and, 475-480, 476-479, 537-539,	methods, 547-550, <i>548-549</i> , <i>632-633</i>
B I' / . f # 4024	538	side effects, 633
Baseline/reference*, 1034	observations, 11-12, <i>12</i> , 50-53	summary, 552
Bayesian method/approach*, 83, 755	ocean carbon balance, 498-499	Carbon monoxide (CO), 13, 14, 174, 1416
Biogeochemical cycles, 11-12, 465-570	paleoclimate*, 468	lifetime and global warming potential, 718, 740
before fossil fuel era, 480-486	perturbations and uncertainties, 96-97	radiative forcing*, 662
carbon removal/storage techniques, 546-552	projections, 26-27, 93-95, <i>96-97</i> , 468-469, 523-	Carbon tetrachloride (CCl ₄), 169-170, 678, 733
connections of carbon, nitrogen, and oxygen	528, 542-546, 1033, 1096-1099, <i>1097-1098</i>	Caribbean region. See Central America and
cycles, 475-480, <i>477-479</i>	regional fluxes, 499-502, <i>500-501</i>	Caribbean
ocean, 259, 291-301, 312 overview, 11-12, 470-480	sensitivity of, 503-504, <i>504-505</i> since industrial revolution, 474-475, 486-504	Cement production, 489 Central America and Caribbean, 106, 1260-1261
	sinks*, 468, 470-472, 471, 480, 495-503, 503, 519-	1260, 1280, 1288, 1338-1341
projections, 93-95, <i>96-97</i> , 468-469, 514-539 since industrial revolution, 474-475, 486-514	523	Central and North Asia, 106, 1268-1269, 1269
See also Carbon cycle	summary, 11-12, 467-469	Chaotic system*, 955, 959, 1033
Biological pump*, 472	terrestrial processes and feedbacks, 502-504, <i>503</i> -	Chlorocarbons, 733
Biomass* burning, 507, 509, 600-601, 616, 663, 671,	505	Chlorofluorocarbons (CFCs), 161, 169-170, 672
714	Carbon dioxide (CO ₂)*, 166-167	1403, 1427
Black carbon*, 600, 616, 685, 685, 1432	air-sea fluxes, 497, 498, 499-501, <i>500-501</i>	lifetime and radiative efficiency, 731
global warming potential, 740	airborne fraction*, 495	radiative forcing*, 127, 661, <i>678</i> , 679, <i>1048-1050</i>
metrics, 718	atmosphere-to-land fluxes, 501-502	Chloroform, 733
projections, 955, <i>1048-1050</i> , <i>1419</i>	atmospheric concentration, 11-12, <i>12</i> , <i>28</i> , 161,	Circulation
radiative forcing*, 1048-1050, 1052, 1404-1409	166-167, <i>166-167</i> , 467, <i>476</i> , <i>1401-1402</i>	atmospheric, 163, 223-232, 899-901, <i>899-900</i>
Blocking*, 229-230, 796, 1220, 1224, 1246-1248	atmospheric, growth rate, 491-494, 493-494	<i>937-938</i> , 956, 1032
Brewer-Dobson circulation*, 90, 163, 230, 1073-	atmospheric, residence times, 472-473	models, 773-774, 782-784, 810-813
1074, 1248	¹³ C/ ¹² C ratio, <i>476</i>	oceanic, 258, 281-285, 283, 433-435, 481, 995
Bromocarbons, 733	carbon cycle and, 470-473	1094-1095
Budgets. See Energy budget; Radiation budget	climate change commitment and, 27-28, 28, 1033	planetary-scale overturning circulations, 1072
	compatible emissions*, 523-528, 526-529	1074
	current rate of rise as unprecedented, 385	projections, 90, 956, 972-975, 989-991, <i>989-990</i>
C	emissions, 486-488, 487, 544-545, 1108-1109,	995, 1071-1074, <i>1071-1074</i> , 1094-1095
	1109, 1410	Clathrates*, 70-71, 1115, 1116-1117
Carbon	emissions metrics, 716-717, 731	Clausius-Clapeyron equation/relationship*, 208
cumulative emissions, 1108-1109, <i>1109</i> , 1112-	emissions, natural, 1421	1083
1113, 1114	feedbacks, 26	Climate*
dissolved inorganic carbon (DIC), 95, 472, 497,	fertilization*, 475, 501, <i>502</i>	key concepts, 123-129
546-552	glacial-interglacial changes, 385, 480-483, 482,	weather and, 123-126, 914-917
land storage, 26, 93	483	Climate change*
models, 502-504	global budget, 488-494	baseline period*, 1034

industrial era, 474-475

lifetime and radiative efficiency, 731

oceanic, 259, 291-293, *294*, 300, *301*, 472

organic, 1048-1050, 1052, 1419, 1431

direct observations of, 124, 130

drivers of, 13-14, 14, 124, 126, 170-174, 1033

general concepts, 119-158, 124-125 downscaling*, 744, 810-817 probability and, 961-962, 974-975 historical overview of assessments, 124-125 drift*, 967-970, 978 quality/skill*, 85-86, 86, 958, 960-961, 964-965, indicators of, 130-137, 130, 164 dynamic global vegetation, 752, 791 966-978, 976-977, 1008-1009 irreversible aspects of, 28, 70-72, 129, 386-387, Earth System Models*, 16, 19, 26-27, 146, 468, retrospective, 85 516, 518, 520, 523-526, 524-529, 743-745, 746, 433-435, 469, 1033 scientific basis for, 958 long-term, 19-20, 89-93, 1029-1136 747, 751-753, 822-823, 822-823 summary, 955, 1011-1012, 1011 temperature, 973, 975, 977-978, 977 multiple lines of evidence for, 121, 129-130 Earth System Models of Intermediate Complexity near-term, 85-89, 953-1029 (EMICs)*, 744-745, 746-748, 748 See also Climate projections observations, summarized, 4-12, 130 emergent constraints, 826-827 Climate projections*, 19-29, 79-108, 125, 953-1136 sun and, 394-395, 885-886 ensemble*, 146, 754-755, 793, 966, 1041-1043 abrupt change*, 1033, 1114-1119 evaluation, 15-16, 75-76, 741-866 air quality, 957, 996-1004 timescales, 28, 125, 128-129, 128, 1033, 1105evaluation, limitations of, 755-756 atlas of, 1311-1393 21st century projections, 1054-1102 evaluation, observations used in, 756-758 atmosphere and land surface, 980-994, 996-1004 weather vs., 123-126 experimental strategies and intercomparisons, atmospheric circulation, 90, 956, 972-975, 988-Climate change commitment*, 27-29, 28, 105, 128-128, 759-760, 759 990, 989-990, 1032, 1033, 1071-1074, 1071-1072 129, 129, 1033, 1102-1105, 1103 extremes, 806-809 carbon cycle, 93-95, 96-97, 514-534, 1033, 1096constant composition, 1103 flux adjustments*, 825 1099, 1097-1098 stabilization scenarios, 102-105, 1107-1113 global, 810-814, 811-813 climate models and, 79-81, 958, 978, 997-998, zero emission commitment, 1104, 1104, 1106initialization*, 754, 760, 770, 796, 958 1013-1014, 1035-1044, 1036-1037, 1047-1052 land, 750-751, 752, 790-791 climate models, consistency and differences, 1099-Climate change projections. See Climate projections long-term simulations, 15 1102, 1099-1101 Climate feedbacks*. See Feedbacks model errors, 62-63, 771-772, 809-810, 815, 1039 climate stabilization and targets, 27-29, 102-105, multi-model ensembles (MMEs), 755, 817-819, 1033, 1107-1113 Climate forcing. See Radiative forcing Climate forecast. See Climate predictions 967, 970, 1039 clouds, 1070-1071, 1070 Climate indices*, 1223 new components of, 751-753 commitment and irreversibility, 1033, 1102-1119, extreme events, 221-222 ocean, 750, 751-752, 777-787 1106-1107, 1114-1119 indices of climate variability, 230-232, 231-235 overview, 746-753, 1036-1037 comparison with observations, 64-65 regional changes in, 209-213, 211-212 parameterizations*, 748, 750 cryosphere*, 92, 92-93, 956, 995-996, 1087-1093, Climate models*, 15-16, 75-76, 741-866 performance, assessment of, 753-758, 809-810, 1088-1092 advances in, 121-122, 142-150, 748-753, 749-750, 821-827, 822-825 data sources and, 155-158, 155-157 824-825 performance, climate sensitivity and, 820-821 energy budget*, 1069-1071, 1069-1070 aerosols, 744, 752, 794-795 performance metrics, 765-766, 766-767 ensemble*, 1041-1043 assumptions, 146, 754, 755 perturbed-parameter, 755, 1040 equilibrium climate sensitivity, 1033, 1105-1107, atmosphere models, 748-750, 760-777 process-based*, 98-99, 806, 1144-1145 1110-1112 Atmosphere-Ocean General Circulation Models projections from, 19-29, 79-81, 127-128, 523-528, extremes, 956, 990-993, 990-991, 1003-1004, (AOGCMs)*, 83, 405, 516, 746, 747, 810-813, 822-825-827, 958, 978, 997-998, 1014-1015, 1035-1064-1068, 1067-1068 823, 822-823, 919, 1144 1044, 1047-1052 global, 19-29, 1054-1058 Atmospheric Chemistry and Climate Model proxy methods*, 388, 394, 404, 457 global projections, 1318-1321 Intercomparison Project (ACCMIP), 958, 1052reanalyses*, 143-144, 185-186, 756-758, 760 greenhouse gases, 955, 998-1000, 1006-1007, recent and longer-term records in, 760-795 1048-1050 regional-scale, 15, 748, 810-817, 816, 1013-1014 Atmospheric General Circulation Models (AGCMs), hydrological cycle, 44-45, 88, 91-92, 91, 956, 984-813 resolution*, 57, 753, 809 988, 985, 987, 1032, 1074-1087 capabilities of, 143-145, 144-150 sea ice, 744, 751, 787-790 initialization, 85, 960-961, 968-969 carbon cycle, 516-518, 751-752, 792-794 semi-empirical*, 99-100, 1140, 1144-1145 joint multivariate projections, 1044 chemistry-climate interactions, 752, 1052 summary, 15-16, 18, 743-746, 822-823 key concepts, 959-962, 1036-1037, 1084-1085, climate sensitivity and feedbacks, 745, 817-821, temperature, 743, 760-761, 767-773, 777-778 1106-1107, 1256-1257 817-819 top-down vs. bottom up, 886 long-term, 1029-1136 climate simulations, 122, 147-150, 743, 767-809, trend models, 179-180 long-term, 21st century, 1054-1102 959-961, 1013-1014 uncertainties*, 139-142, 140-141, 809-810, 815, long-term, beyond 2100, 1102-1119 climate variability and, 61-62, 129, 142-143, 230-1035-1040, 1038, 1197-1198 long-term projections, 89-93 232, 743, 769-770, 795-806 model agreement, 1041-1043 vegetation, 752, 791 comparison of, 16, 27, 29, 523-526, 1099-1102, See also specific topics and models near-term, 978-1012 Climate patterns*, 232-235, 1224 1099-1101 near-term projections, 85-89 comparison with observations, 74, 146, 822-823, Climate penalty, 685 oceans, 93, 956, 993-995, 993-994, 1033, 1093-1013-1014 Climate phenomena, 105-108, 106, 1217-1308 confidence in, 743-745, 762, 768, 769-772, 793, See also Regional climate change pattern scaling, 1058-1062, 1061 806, 813, 822, 824-825 Climate predictions*, 953-1028 precipitation, 7, 956, 984-986, 985, 992-993, 992, Coupled Model Intercomparison Project Phase 5 concepts and terms, 959-961 1014-1015, 1032, 1278-1287 (CMIP5), 19-20, 21, 79-81, 146, 514-523, 516-518, decadal prediction, 955, 958, 966-978 precipitation, long-term, 91-92, 91, 1032, 1055-521-522, 670, 745, 747-748, 756-759, 759-760, hindcasts*, 965, 967, 970, 973-974, 975 1057, *1057*, 1076-1079, *1078* 766, 818-819, 822-823, 968-969, 971-978, 1031, initialization, 85, 961-962, 968-969, 975, 975 probability in, 961-962

near-term, 963-978

predictability studies, 962-965, 963

quality/skill*, 85-86, 86, 958, 960-961, 976-977

radiative forcing*, 79-80, 700-701, 701, 955,

1035, 1047-1052, *1048-1050*, 1099-1102

development and tuning, 144, 749-750

1005-1010, 1006-1007, 1046-1052, 1048-1050 614, 607, 618-623, 623, 625-626, 683-685 1251-1253, 1288-1289 reference period, 958, 1034, 1313 anthropogenic sources of moisture, 592-595 models, 743, 807 regional projections, 956, 957, 1001-1002, 1001aviation-induced cloudiness, 574, 592-594, 686 observations, 7 1003, 1014-1015, **1217-1308**, 1288-1289, 1322cloud albedo effect, 578, 610, 1048-1050 cloud condensation nuclei (CCN)*, 603-604, 608, scenarios, 955, 956, 997, 1031, 1034, 1045-1047 sea level change*, 7, 25-26, 26, 98-101, 125, 1140, cloud convection effects, 573, 585 1150-1191 cloud feedbacks*, 587-592, 819-820 sensitivity of, 979, 1007 cloud lifetime effect, 1048-1050 summary, 19-29, 955-957, 1009-1012, 1011-1012, cloud radiative effect (CRE)*, 580-582, 582, 585-1031-1033 D 586, 764, 765 temperature, 7, 955-956, 973-974, 980-984, 981cold clouds, 611-612 983, 1006, 1006, 1010-1012, 1012-1014, 1278cosmic ray effects on, 613-614, 691 effects on Earth's radiation budget, 580-582, 582 temperature, long-term, 89-90, 1031-1032, 1054feedbacks, 573-574, 576-578, 577, 587-592 1057, 1054-1056, 1062-1068, 1063 formation and types, 576, 578-580, 579-581 17-19, 125, **867-952** transient climate response, 1033, 1110-1112 general concepts, 578-595, 593-594 tropical cyclones, 993-994, 993 geoengineering methods, 628 uncertainties*, 115, 955, 978-1039, 979, 1004ice clouds, 585 1012, 1034, 1035-1040, 1038, 1057-1058, 1058 lifetime effects, 578, 609-610 liquid clouds, 585, 609-611 931, 937-938 vs. predictions, 978 See also Regional climate change; specific topics mixed-phase clouds, 585 models, 16, 573, 582-587, 591-592, 592, 608-611, Climate regime*, 1225 Climate scenarios*, 29, 131-132, 147-150, 1031, 743, 762-766, 764 1034, 1036-1037, 1045-1047 observations, 578-595 comparison of, 1047 opacity, 590 tables, 1395-1445 precipitation effects, 624-627 uncertainty*, 1038-1039, 1038 in present-day climate system, 578-582 definition, 872-873 See also Emissions scenarios processes, 582-587, 592 Climate sensitivity*, 82-85, 164, 745, 817-821 projections, 1070-1071, 1070 radiative forcing (CRF)*, 126, 126, 576-578, 577, equilibrium climate sensitivity (ECS), 16, 81, 82-85, 385, 405-407, 405-406, 817-819, 817, 821, 920-618-621, 682-684 926, 925, 1110-1112 sea-ice interactions, 590 probability density functions (PDFs)*, 134-135, water vapour feedbacks, 574 Cold days/cold nights*, 162, 210-212, 221 transient climate response (TCR), 16-17, 84-85, projections, 86, 956, 990, 1065-1066, 1067 irreversibility and, 28 128, 817-818, 821, 920-921, 925, 1110-1112 Commitment. See Climate change commitment Climate simulations, 122, 147-150, 743, 767-795, Compatible emissions*, 523-528, 526-529, 1104 959-961, 1013-1014 Confidence*, 4, 36, 139-142, 142 Climate stabilization, 27-29, 102-105, 1033, 1107-Contrails, 574, 592-594, 686 Cosmic rays, 573, 613-614, 691 Climate system*, 15, 15-19, 60-78, 871, 920-931 Cryosphere*, 9, 69, 317-382 null hypothesis, 878 climate models, 15-16 area, volume, and sea level equivalents, 321-322 environmental data, 1437-1445 attribution of changes, 870, 906-910, 931, 936-937 934-935 historical data, 1401-1409 components, 321, 321, 322 nonlinear, chaotic nature of, 955, 960, 1033 feedbacks, 27, 321, 358, 359, 757 observed changes, 4-12, 37-52 frozen ground*, 320, 362-366, 367 quantification of responses, 16-17 glaciers*, 319, 335-344, 367 responses of, 16-17, 81, 1004 ice sheets*, 320, 344-357, 367 scenario tables, 1395-1445 impact of changes in, 321-323 transient climate response, 16-17, 920-921, 925 irreversible changes, 71-72 warming of, 4-5, 5, 6-7, 198-199 lake and river ice, 320, 361-362, 367 Climate targets, 102-105, 1033, 1107-1113 observation methods, 323, 335-338, 338, 368 Climate variability*, 121, 138, 142-143, 164, 232observations, 9, 10, 136-137, 317-382 235, 795-806, 959 projections, 24-25, 88, 323, 956, 995-996 indices of, 230-232, 231-235 projections, long-term, 92, 92-93, 1032-1033, interannual-to-centennial, 799-806, 806 1087-1093, 1088-1092 internal, 61-62, 769-770, 919, 923, 959 sea ice*, 319, 323-335, 367, 870 Direct air capture*, 550 modes of*, 415-416, 744, 801-803, 1220, 1222seasonal snow, 320, 358-361, 358-360 1223, 1223-1225, 1288-1289 summary, 319-320, 367-368, 367 Doha Amendment, 169 patterns of*, 232-235, 900-901, 900, 1243-1246 Cyclones, 110, 162, 1220, 1248-1253 Downscaling*. See Climate models Clouds, 208, 571-657 attribution of changes, 871, 913-914, 938 Drivers of climate change, 13-14, 53-59, 392-393

extratropical*, 113, 217-220, 743, 913, 1220,

aerosol-cloud interactions*, 164, 573, 578, 606-

projections, 7, 107-108, 108, 110, 113, 956, 992-993, 993, 1219, 1249-1253, 1250, 1288-1289 tropical, 7, 107-108, 108, 113, 162, 216-217, 216, 807, 871, 913-914, 938, 956, 992-993, 993, 1220, 1248-1251, 1288-1289 Dansgaard-Oeschger (DO) events*, 432-433 Deforestation*, 50, 55, 1008 Detection and attribution of climate change*, 7, anthropogenic radiative forcings, 13-14, 14, 17, 146, 617, 661-662, 675-688, 932-934, 1005-1008 atmosphere and surface, 878-901 atmospheric circulation, 871, 899-901, 899-900, atmospheric temperatures, 869-870, 878-893 climate models and, 825, 869, 872, 875-876 climate system properties, 871, 920-927 combination of evidence, 871, 924-926, 931 context, 151, 872-874 cryosphere*, 870, 906-910, 931, 936-937 Earth system properties, 926-927 extremes, 110, 871, 910-917, 911 fingerprinting, 873-874, 877-878, 894-895 greenhouse gases, 127, 150, 869, 887, 932 human attribution, 7, 17-19, 121, 125, 127, 869-871, 927-931, 932-939 hydrological cycle, 72, 870, 895-899, 931, 935-936 lessons from the past, 919-920 methods, 872-878, 875-876, 894-895 models, 825, 869, 872, 875-876 multi-century to millennia, 917-920, 938 multi-variable approaches, 878, 927 ocean properties, 293-294, 870, 901-906, 926, precipitation, 72, 870, 871, 896-897, 897-898 regional changes, 888-891, 889, 919, 938-939 scaling factors, 873-874 sea level change, 870, 905, 1156, 1176-1179 single-step and multi-step attribution, 878 solar irradiance and forcing, 885-886 summary, 869-871, 893, 927-931, 932-939 temperature, 17-19, 60, 869-870, 871, 878-893, 918-920, 930, 932-934 time series methods, 874-877, 887-888, 895, 1223 weather and climate events, 914-917 whole climate system, 927-931, 930 Dimethyl sulphide (DMS), 601 Diurnal temperature range (DTR). See Temperature

long-term, 1033

near-term, 170-174, 668	projections, 106, 991, 1264-1266, 1265, 1281,	permafrost-climate, 27
summary, 13-14, 14, 124, 126	1288, 1350-1357	projections, 24
uncertainties, 114	severe storms, 217	snow-albedo, 321, 358, 359, 757
Droughts*, 110, 112, 212, 214-215, 1118	temperature, 939, 991	timescales of, 128-129, <i>128</i> , 1105-1107
attribution of changes, 912-913	wind speeds, 217, <i>220</i>	water vapour, 586-587, <i>587</i> , <i>667</i> , 819
megadroughts, 110, 112, 422, 423-424	Evaporation, 205, <i>269-270</i>	Fingerprints*, 873-874, 877-878, 894-895
models, 807-809	projections, 91-92, 573, 986-988, 1032, 1081-	Fires, 542, 693, 752
observations, 7, 162, 211-212, 212	1082, <i>1082</i>	Floods, 112, 214, 290, 915-916, 915
paleoclimate*, 386, 422-425, 423-424	Extratropical circulation, 415-416, 773	paleoclimate, 386, 422-425, <i>424</i>
projections, 7, 91-92, 110, 986, 1086, 1118	Extratropical cyclones*, 113, 217-220, 743, 913,	Forests*, 543, 1115, 1117
Dust, 394, 600, 605, <i>1048-1050</i>	1220, 1251-1253, <i>1288-1289</i> Extremes , 72-73, <i>109-113</i> , 121, 134-136, 162-163,	deforestation*, 50, 55, 1008 potential irreversible changes, <i>70-71</i>
	209-222	Fossil fuel emissions*, 467, 477, 489, 616
E	air pollution and, 1005	compatible emissions, 93, 94, 523-528, <i>526-529</i>
_	attribution of changes, <i>110</i> , 871, 910-917, <i>911</i> ,	Frequently Asked Questions (FAQs)
Earth system	931	Are climate models getting better, and how would
energy budget, 1069-1071, <i>1069-1070</i> , 1140,	changes in, 209-222, <i>218-219</i>	we know?, <i>824-825</i>
1159-1161	confidence levels, 134-136, <i>135</i>	Are glaciers in mountain regions disappearing?,
properties, 926-927	cyclones, <i>113</i> , 217	345-346
responses and feedbacks, 388, 395, 398-415	extratropical storms, 217-220, 1074, 1075	Climate is always changing. How do we determine
El Niño-Southern Oscillation (ENSO)*, 106-107,	fraction of attributable risk, 47	the causes of observed changes?, 894-895
232, <i>233-235</i> , 1240-1243	hydrological cycle, <i>110-112</i> , 213-216, 912-913,	Could geoengineering counteract climate change
Atlantic Niño, 233, 803, 806, 1224, 1239-1240	1082-1087	and what side effects might occur?, 632-634
changes, 1240-1242, <i>1242</i>	indices of, 221-222	Could rapid release of methane and carbon dioxide
impacts, 1224	models, 15, 744, <i>758</i> , 806-809, <i>808</i>	from thawing permafrost or ocean warming
indices, 231, 232, 233-234	observations, 46-50, <i>110</i> , 162-163, 164, 209-222	substantially increase warming?, 530-531
models, 15, 744, 803-805, <i>804</i> , <i>806</i> , 1220	precipitation, 23, <i>110-112</i> , <i>211-212</i> , 626-627, 807, <i>808</i> , 871, 912, 956, <i>991</i> , 992	Do improvements in air quality have an effect on
paleoclimate*, 386, 415-416, <i>416</i> projections, 23, 106-107, 1240-1243, <i>1242</i> , 1259,	probability density functions (PDFs)*, 134-135,	climate change?, 684-685 Have there been any changes in climate extremes?,
1288-1289	134	218-219
tropical Pacific mean state, 1240, <i>1241</i>	projections, 956, 990-993, <i>990-991</i> , 1003-1004,	How are future projections in regional climate
variability, 129, 744, <i>806</i>	1031-1032, 1064-1068, <i>1067-1068</i> , 1082-1087	related to projections of global means?, 1256-
Electromagnetic spectrum*, 126	regional, <i>211-212</i>	1257
Emission metrics, 17, 58-59, 59, 662-663, 710-720,	sea level, 7, 101, 110, 258, 290-291, 290, 1140,	How do aerosols affect climate and climate
731-738	1200-1204	change?, 622-623
application of, 716-720	severe local weather, 216	How do clouds affect climate and climate change?,
concepts, 710-716, <i>710-712</i>	small-scale, 163	593-594
by sector, 719-720, <i>720</i>	SREX, <i>7</i> , <i>110</i> , 209, 212-214, 217	How do volcanic eruptions affect climate and our
Emissions scenarios*, 516-517, 523-528, 662-663,	temperature, 109-112, 209-212, 209-212, 211-	ability to predict climate?, 1008-1009
997, 1106-1107, 1410-1421	<i>212, 218-219,</i> 871, 910-912, 931, 990-992, <i>990-</i>	How do we know the world has warmed?, 198-199
compatible emissions*, 523-528, 526-529, 1104	991, 1031-1032, 1064-1068, 1067-1068	How does anthropogenic ocean acidification relate
Representative Concentration Pathways (RCPs)*, 79-81, 147-150, 468, 523-526, 524-529, 1045-	tropical storms, 216-217, <i>216</i> waves, 1141	to climate change, 297-298 How important is water vapour to climate change?,
1047, 1100	waves, 1141	666-667
SRES scenarios*, 131-132, <i>146-147</i> , <i>149-150</i> , 955,		How is climate change affecting monsoons?, 1228-
997, 1045, <i>1100</i>	F	1229
zero emission commitment, 1104, 1104, 1106-		How is sea ice changing in the Arctic and
1107	Feedbacks*, 16, 57-58, 82-85, 127, 128	Antarctic?, 333-334
Energy budget of the Earth*, 67-68, 1140, 1159-	carbon cycle*, 26, 475-480, 477-478, 514-523,	How unusual is current sea level rate of change?,
1161	515-518, 520	430-431
glaciers and, 344	climate*, 57-58, 817-821, <i>817-819</i>	How will the Earth's water cycle change?, 1084-
projections, 1069-1071, <i>1069-1070</i>	climate-carbon cycle, 514-523, 515, 516-518, 551-	1085
Energy inventory (global), 257, 264-265	552	If understanding of the climate system has
Equilibrium climate experiment*, 128	climate-vegetation, 752, 791	increased, why hasn't the range of temperature
Equilibrium climate sensitivity (ECS), 16, 81, 82-85,	cloud and aerosol, 573-574, 576-578, <i>577</i> , 587-	projections been reduced?, 140-141
385, 405-407, <i>405-406</i> , 817-819, <i>817</i> , <i>821</i> , 920-	592, <i>593-594</i> , 605-606	If you cannot predict the weather next month, how
926, <i>925</i> , <i>1110-1112</i>	cryosphere*, 27, 321, 358, 359, 757	can you predict climate for the coming decade?,
projections, 81, 1033, 1105-1107	distinguished from forcing and rapid adjustments,	964-965

576-578

818

395, 398-415

Earth System (global and hemispheric scales), 388,

models, 16, 19, 26, 514-521, 516-518, 817-821,

Is the ocean warming?, 266-267

climate?, 392-393

cycle?, 269-270

Is the Sun a major driver of recent changes in

Is there evidence for changes in the Earth's water

summary, 1110-1112

Europe and Mediterranean, 1264-1266, 1265

precipitation extremes, 211-212, 213, 991

climate indices, changes in, 211-212

flood frequency, 424, 915-916, 915

What happens to carbon dioxide after it is emitted Global Warming Potential (GWP)*, 17, 663, 710-Texas (2011), 212, 916 to the atmosphere?, 544-545 714, 711-712 Hindcasts*, 965, 970, 973-974, 975 What would happen to future climate if we GRACE satellite mission, 349, 351-353, 380, 1156, precipitation, 976 stopped emissions today?, 1106-1107 sea surface temperature*, 967 When will human influence on climate become Gravity field. See GRACE satellite mission Holocene* . See Paleoclimate obvious on local scales?, 928-929 Greenhouse effect*, 124, 127, 666-667 Human effects on climate, 7, 17-19, 121, 127, 928-Why are so many models and scenarios used to Greenhouse gases (GHGs)*, 126, 127, 161, 165-170, project climate change?, 1036-1037 carbon cycle, 467-468 Why does local sea level change differ from the anthropogenic*, 17, 27-28, 391, 869, 887, 932, detection and attribution studies, 867-952 global average?, 1148-1149 irreversible aspects of, 28, 469 Will the Greenland and Antarctic ice sheets ocean acidification, 293-294, 295-298 commitment and irreversibility, 1033 contribute to sea level change over the rest of the emissions scenarios, 516-517, 523-528, 662-663, oceanic carbon dioxide, 292-293, 293 century?, 1177-1179 997-1001, 1410-1421 radiative forcing*, 13, 14, 17, 146, 617, 661-662, Freshwater ice, 320, 361-362 feedbacks, 17, 128, 667 675-688 Frozen ground*, 320, 362-366, 367 glacial-interglacial changes, 385, 480-483, 482, See also Detection and attribution permafrost*, 320, 362-364, 362-363 Humidity, 162, 201, 205-208, 206, 870 seasonally frozen, 320, 364-366, 365-366 global trends, 164 in climate models, 819 lifetimes, 128-129, 128 projections, 956, 987, 988, 1032, 1076, 1076 observed changes, 4, 11-12, 132-134, 132-133, relative*, 987, 988, 1076 G 164, 165-170 specific*, 206, 206, 956, 987, 988, 1032 observed changes, last millennium, 485-486, 486 surface, 205-206, 206 Geoengineering*, 29, 98, 546-552, 632, 632-634 paleoclimate*, 385, 391-398, 483-484, 483 tropospheric, 206-208 Carbon Dioxide Removal (CDR)*, 469, 547-551, projections, 19, 27-28, 148, 955, 997-1001, 1006-Hurricanes, 809, 994 548-549, 632-633 1007, 1410-1420, 1422-1427 See also Cyclones carbon sequestration in ocean, 549-550 radiative forcing*, 13-14, 14, 126, 164, 165, 391-Hydrochlorofluorocarbons (HCFCs), 161, 170, 1403, climate response and, 629-635, 629-631 398, 470, 661, 675-676, 1404-1409 side effects and risks, 29, 575, 627-628, 632-634 lifetime and radiative efficiency, 661, 731 since industrial revolution, 486-514 Solar Radiation Management (SRM)*, 29, 469, spectral properties, 675-676 Hydrofluorocarbons (HFCs), 168-169, 998, 1402 574-575, 627-635, 629-631, 633-634, 693 atmospheric concentration, 161, 168-169, 168 well-mixed, 165-170, 166, 661, 668, 676-679, 677volcanic eruptions as analogues for, 693 678, 1006-1007 lifetime and radiative efficiency, 732-733 Geopotential height, 223, 223, 226 See also Emissions; specific gases projections, 1414-1416, 1424-1427 Glaciation Greenland ice sheet, 9, 137, 320, 349-351, 397, 909 radiative forcing*, 678, 679, 1434 future, 387, 435 attribution of changes, 870, 909, 931 Hydrological cycle*, 17, 72, 162, 201-208 glacial-interglacial cycles*, 385, 399-402, 480-483, dynamical change, 1168-1169 abrupt/irreversible changes, 1115, 1118-1119 attribution of changes, 17, 72, 870, 895-899, 931, loss of (possibility), 71-72, 353, 363, 1140, 1169last glacial termination, 389, 400-401, 428-432 935-936 Glaciers*, 319, 335-344, 345-346, 367 mass balance*, 347, 380-381, 1139, 1153-1155, changes in, 42-45, 269-270, 273 abrupt glacial events, 483 1154-1155, 1165-1168, 1166 extremes, 110-112, 213-216, 912-913, 1082-1087, anthropogenic influence, 19 models, 753, 1166-1168 1083.1086 attribution of changes, 870, 909-910, 931 observed changes, 349-351, 350, 357, 367, 368 greenhouse effect and, 666 calving*, 335, 336, 337, 342, 343 paleoclimate*, 387, 1170 land water storage, 1151, 1155-1156, 1176-1179, current area and volume, 335, 336-337 projected loss of, 29 deglaciation*, 385, 400 observations, 40-46, 42-45, 162, 164, 201-208 projections, 25, 1140, 1165-1170 dynamic change potential, 1164-1165 sea level equivalent, 320, 321, 350, 353-354 oceans and, 265, 273 equilibrium line*, 338, 345-346 sea level rise and, 1139, 1140, 1153-1154, 1154paleoclimate*, 386, 421-422 greenhouse gases and, 480-483 1155, 1165-1170, 1177-1179, 1182 projections, 20-23, 88, 956, 984-988, 985, 987, mass balance/budget*, 319, 341-344, 343, 1151, thresholds and irreversibility, 71-72, 1169-1170 1084-1085 1153 projections, long-term, 44-45, 91-92, 91, 1032, measurement methods, 335-338, 338 1074-1087, 1082-1087, 1083, 1086 Н models, 1145, 1163-1164 proxy data, 421-422 observed changes, 9, 319, 338-344, 339-340 radiative forcing*, 624-625 paleoclimate, 385, 421 Hadley Circulation*, 226-229, 227, 871, 899-900, surface hydrology, 790-791, 897-899 projections, 24, 25, 1145, 1164-1165 See also Precipitation; Water vapour projections, 90, 956, 989-990, 989, 1032, 1073 sea level change and, 367, 1139, 1151-1153, 1151, 1163-1165, 1164-1165, 1182 Halocarbons*, 13, 14, 675, 717 sea level equivalent, 319, 321 radiative forcing*, 678-679, 678 summary, 9, 24, 137, 319, 367 Halogenated alcohols and ethers, 734-737 Ice, 136-137, 319-320 volume and mass changes, 338-344, 339-344 Halons, 733 Global Damage Potential (GDP), 715 aerosol absorption on, 574 Heat flux, 182, 274-275, 786 Global dimming*, 161, 183-184, 794 Heat waves*, 5, 7, 110, 211-212, 212 annual melt rates, 264

attribution of changes, 915, 916, 939

projections, 110, 1066

Russia (2010), 212, 915, 916

Global Positioning System (GPS), 143, 196, 207

663, 712-714, 714-715, 720

Global Temperature change Potential (GTP), 17,

freshwater ice, 320, 361-362, 367

sea ice*, 319, 323-335, 367, 870

river and lake ice, 320, 361-362, 367

See also Glaciers	K	paleoclimate, 385, 485
Ice age*, 386, <i>389</i> , <i>413</i>		permafrost*, 508, <i>530-531</i> , 541-542
Ice clouds, 585	Kyoto Protocol*, 715	projections, 24, 27, 148, 156, 468-469, 539-542
Ice cores*, 391-394, 432, 485	Kyoto Protocol gases, 161, 166-170, 997, 1005,	540, 997-998, <i>999, 1048-1050, 1411, 1422</i>
Ice nuclei, 604		radiative forcing*, 13, 14, 126, 661, 662, 674-675
Ice sheets*, 320, 344-357, 367, 1177-1179	1401-1402	677, 678, 1048-1050, 1433
Antarctic, 9, 25, 29, 137, 320, 321, 351-353, 352-		Methane hydrate, 542
<i>353</i> , 356-357, 368, 909, 1170-1176	L	Methyl chloroform (CH ₃ CCl ₃), 678, 733
attribution of changes, 870, 909-910, 931		Methylene chloride (CH ₂ CH ₂), 733
basal lubrication*, 354-355	Lake ice, 320, 361-362, <i>367</i>	Metrics*
calving*, 355	Land carbon storage, 26, 93	emission metrics, 17, 58-59, <i>59</i> , 662-663, 710-720
causes of changes, 353-355	Land surface, 790-791	731-738
climate-ice sheet interactions, 402-403	Land surface air temperature*, 162, 164, 187-189,	model performance metrics, 765-766, 766-767
dynamics and stability, 25, 1159, 1168-1169,	187	Microwave Sounding Unit (MSU), 194-196, 195
1172-1174, <i>1175-1176</i> , 1179	Land use and land use change*, 127, 162, 188-189,	Mineral dust aerosol (MDA), 394, 600, 605, 617
Greenland, 9, 25, 29, 137, 320, 321, 349-351, 350,	686-688	Mitigation*, 27-29
357, 870, 909, 1165-1170		Models. See Climate models
grounding line*, 347, 351, 353, 357	carbon dioxide emissions, 467, 474-475, 489-491,	Modes of climate variability*, 415-416, 744, 801
	490-492	
ice loss, 320, 349-353, <i>353-354</i> , <i>380-382</i>	future scenarios, 523	803, 1222-1223
irreversible changes, 29, 71-72, 355-356, 433,	land cover, 686-687	definitions and impacts, 1223-1225
<i>1115</i> , 1116, 1169-1170, 1174	land water storage, 1151, 1155-1156, 1176-1179,	projections, 1220, <i>1288-1289</i>
marine ice-sheet instability hypothesis (MISI),	1182	regional impacts, 1224
1175-1176	models, 752, 791	responses to climate change, 1222-1223
mass balance/budget*, 344-353, 347-348, 380-	projections, 1006-1007, 1038, <i>1048-1050</i> , 1052,	Monsoons*, 105, 1222, 1225-1235, 1228-1229
<i>382</i> , 1139	1099	1288-1289
measurement techniques, 347-349, 347-348	radiative forcing*, 662, 686-688, <i>687</i> , <i>1048-1050</i> ,	abrupt/irreversible changes, 1115, 1118-1119
models, 25-26, 753, 1145	3	African, 1234, <i>1235</i>
observed changes, 9, 10, 320, 346-353, <i>347-348</i>	1052, 1404-1409	American, 1232-1234, <i>1233</i>
_	urban effects, 162, 188-189	
ocean interactions, 354, 355, 356-357	Land water storage, 1151, 1155-1156, 1176-1179,	Asian-Australian, 1227-1232, 1230-1231
paleoclimate*, 387, 426-431, 1170, 1174	1182	East Asian, <i>1230-1231</i> , 1231-1232
polar amplification, <i>397</i> , 907	Lapse rate*, 586-587, 587, 819	Indian, 1229-1231
processes, 354-355	Likelihood*, 36, 139-142	models, 15, 798-799, <i>799</i> , 1219
projections, 25, 29, 1145, 1165-1176	See also Confidence; Uncertainty	observations, 163, 227
rapid changes, 355-357	Long-term climate change, 19-20, 89-93, 1029-	overview, 1225-1227, <i>1226-1227</i>
sea level change and, 29, 355, 367, 1139, 1145,	1136	paleoclimate*, 387, 401-402, 401, 421-422
<i>1151</i> , 1153-1155, <i>1154-1155</i> , 1165-1176, <i>1177-</i>	See also Climate projections	projections, 23, 105, <i>107</i> , 1118-1119, 1219, 1225
1179, 1182	see also Climate projections	1235, 1288-1289
sea level equivalents, <i>321</i> , <i>352-354</i> , 353		Montreal Protocol*, 661, 672, 678
subsurface melting, 356-357	NA.	Montreal Protocol gases, 161, 170, 678, 1403, 1427
	M	_
summary, 320, <i>353-354</i> , <i>367</i>		1435
Ice shelves*, 320, 353, 367	Madden-Julian Oscillation (MJO)*, 796-798, 798,	
Indian Ocean, 233-235, 280, 495	1220, <i>1224</i> , 1237	
models, 787	Mediterranean region. See Europe and	N
projections, 1219	Mediterranean	
Indian Ocean Dipole (IOD)*, 233-235, 1220, 1237-	Meridional Overturning Circulation (MOC). See	Natural forcings, 13-14, 14
1239	Atlantic Meridional Overturning Circulation	Near-term climate change, 85-89, 953-1029
impacts, 1224		See also Climate projections
models, 744, 805, <i>806</i>	Methane (CH ₄)*, 11, 165, 167, 385, 486, 508-510	Near-term climate forcers (NTCFs)*, 668, 717-718
projections, 1237-1239, <i>1238-1239</i>	anthropogenic, 509, 663, 955, 1411	New Zealand. See Australia and New Zealand
	atmospheric changes, 505-508	
Indonesian Throughflow, 284-285	atmospheric concentration, 156, 161, 166-167,	Nitrate aerosols, 605-606, 616-617, 1048-1050
Industrial Revolution*, 474-475, 486-514, 697-698	167, <i>1401-1402</i>	Nitrogen, 93, 127, 468, 535-539, <i>538</i>
Insolation*, 794-795	clathrates*, 70-71, 1115, 1116-1117	global budgets, 510-514, <i>511-512</i>
Inter-Tropical Convergence Zone (ITCZ)*, 387, 786,	couplings and feedbacks, 674-675	Nitrogen cycle, 475-480, <i>477-479</i>
1077, 1219, 1236	glacial, 482-483, <i>483</i>	projections, 535-539, <i>536-540</i>
Iron fertilization*, 481, 543	global budget, 505-510, <i>507-508</i>	Nitrogen dioxide (NO ₂), 174, <i>174</i>
Irreversibility*, 27-29, 70-72, 129, 386-387, 433-435,	growth rate, 385, 506, <i>506</i>	Nitrogen fertilizers, 469, 510, 512, 535-536, <i>536</i>
469	-	Nitrogen fixation, 475, 477, 511, 514, 1419-1420
ice sheets*, 29, 71-72, 355-356, 433, 1115, 1116,	industrial era, 475	Nitrogen oxides, 717-718, 739
1154, 1169-1170	lifetime and radiative efficiency, 731, 1432	Nitrogen trifluoride (NF ₃), 169, <i>678</i> , 679, <i>733</i>
	methane cycle, 473-474, 474, 752	
long-term projections, 1033, 1114-1119	models, 509-510, 752	Nitrous oxide (N ₂ O)*, 11, 167-168, 475
paleoclimate perspective, 386-387, 433-435	natural sources, 508-509	atmosphere burden and growth rate, 385, 510
sea level and, 29	observed changes, 11, 133, 134, 161, 165-166,	512, <i>511-513</i>

166, 167, 467, 505-508

Islands. See Pacific islands

atmospheric concentration, 161, 167-168, <i>168</i> ,	freshwater content, 257, 272, 273	monitoring sites, 173
476, 1401-1402	freshwater fluxes, 275-276, 276, 994	ozone hole*, 171, 752
feedbacks and sensitivity, 512-514, 513	heat content, 17, 18, 257, 260-263, 262, 264, 266,	projections, 24, 542, 957, 997, 1000, 1001-1002,
glacial, 482-483, <i>483</i>	<i>301</i> , 779-781, <i>782</i> , 901-903, <i>902</i>	1048-1050, 1428, 1438-1442
global budget, 510-514, <i>511-512</i>	heat content, modeling, 743	radiative forcing*, 13, 17, 127, 661-662, 670-672,
global warming potential, 717	heat content, projections, 1162	672, 679-681, 1048-1050, 1404-1409, 1434
lifetime and radiative efficiency, 731, 1433	heat fluxes, 274-275, <i>786</i>	stratospheric, 161, 171-172, <i>172</i> , 672-674, 681-
observed changes, 11, <i>133</i> , 134, 161, <i>166</i> , 167-	heat uptake*, 93, 267, 821, 1161-1163, 1162	682, <i>681</i> , 774-775, 999, <i>1048-1050</i> , 1078, <i>1428</i>
	· · · · · · · · · · · · · · · · · · ·	
168, 467-468, 486	human influences, 17, 292-294, <i>293</i>	tropospheric, 161, 172-173, 670-672, <i>672-673</i> ,
paleoclimate*, 385, 485	inertia and, 958	679-681, 680-681, 684, 775, 998-999, 1048-1050,
projections, 148, 157, 469, 535-537, 537, 998,	iron deposition/fertilization*, 481, 543	1428-1429
1048-1050, 1412, 1423	irreversible changes, 433-435	Ozone-depleting substances, 161, 169-170
radiative forcing*, 13, <i>14</i> , 126, 127, 661, 675, 677-	mass observations, 1156, 1157	
678, <i>678</i> , <i>1048-1050</i>	models, 750, 751-752, 753, 758, 777-787	
Non-methane volatile organic compounds	nitrogen concentration, 475	P
(NMVOCs)*, 13, 14, 174, 996, 1000, 1417	nutrients, 298-300	
Nonlinearity*, 955, 960, 1033	observations, 8, 10, 22, 255-315, 302	Pacific Decadal Oscillation (PDO)*, 230, 231, 233-
North America	observations, capabilities and methods, 144, 302,	235, 1253
climate indices, changes in, <i>211-212</i> , 212	311-316	impacts, <i>1224</i>
cyclones, 217	ocean-atmosphere coupling, 753, 1118-1119	models, 806, 806, 1253
	ocean heating rate (OHR), 182, 183	predictions, 971, 972
monsoon, 1233, <i>1233</i>	_	
precipitation extremes, 211-212, 213	oxygen concentrations, 259, 294-298, 300-301,	Pacific Decadal Variability*, 233-235, 972
projections, 106, 1258-1260, 1259, 1279, 1288,	300, 469, 535, 870, 905-906	Pacific Islands region, 106, 1275-1276, 1285, 1289,
1334-1337	oxygen projections, 532-534, <i>534-535</i>	1386-1389
North Atlantic Oscillation (NAO)*, 230, 231, 233-	paleoclimate*, 433-435, <i>456</i> , 484, 783-784	Pacific/North American (PNA) pattern*, 231, 233-
<i>235</i> , 354, 1244-1245	precipitation and, 275-276, 276	<i>235</i> , <i>806</i> , <i>1224</i> , 1253
impacts, <i>1224</i>	projections, 24, 88, 468, 469, 519-520, 528-532,	Pacific Ocean, 271, 280, 495
models, 744, 801, <i>806</i>	956, 993-995, <i>993-994</i>	circulation systems, 281-282
paleoclimate*, 386, 415-416	projections, long-term, 93, 1033, 1093-1095	tropical, mean state, 743, 786-787
projections, 989, 1220, 1244-1245, <i>1245</i>	salinity, 8, 257, 265-273, <i>280</i> , 301, 870, 903-905,	Pacific/South American (PSA) index, 231, 233-235
summary, <i>806</i>	904, 994, 994, 1094, 1094	Pacific/South American (PSA) pattern, 1221, 1224,
North Pacific Oscillation (NPO), 801, 1224	solubility/biological pumps*, 472	1253
* **		Paleoclimate*, <i>124</i> , 383-464
Northern Annular Mode (NAM)*, 233-234, 900,	summary, 257-259, 301-302, <i>302</i>	
900, 1244	surface temperature, 5, 6, 777-779, 778-780	8.2 ka event, <i>389</i> , <i>434</i>
impacts, <i>1224</i>	temperature, 5, 6, 68-69, 257, 260-265, <i>266-267</i> ,	abrupt change and irreversibility, 386-387, 432-
models, 415, <i>806</i>	901-903, <i>902</i> , 993-995, <i>993-994</i>	435, <i>434</i>
paleoclimate*, 415-416	temperature projections, 24	carbon dioxide, 385, 391-394, 399-400, 400, 457,
projections, 108, 989, 1245, <i>1245</i>	thermal expansion*, 99, <i>99</i> , 1139, 1143, 1150-	<i>459-460</i> , 468, 483-484, <i>483</i>
summary, <i>806</i>	1151, <i>1159</i> , 1161-1163, 1180, <i>1182</i>	droughts*, 386, 422, <i>423-424</i>
	thermal forcing, 354	Earth system responses and feedbacks, 388, 395,
	upper ocean salinity, 268-273	398-415
0	upper ocean temperature, 257, 258, 261-262, <i>261</i> ,	equilibrium climate sensitivity, 923-924
	263, 265, 301, 870, 901	floods, 386, 422-425, <i>424</i>
Observations. See specific topics	warming (observed), 8, 10, 17, 24, 257, 260-265,	glacial-interglacial cycles, 385, 399-402, 480-483,
Oceans, 8, 255-315	280	482-483
acidification*, 11, 12, 12, 52, 69, 136, 259, 295-	warming rates, 263, <i>263</i>	greenhouse gases, 385, 391-398, 483-484, <i>483</i>
<i>296</i> , 300, 751, 870, 905-906	water exchange between ocean basins, 284-285	Holocene*, 389, 417-425, 428-435, 434, 776-777,
acidification, anthropogenic influence, 293-294,	water mass properties*, 258, 278-281	<i>776-777</i> , 1146
295-298	wave heights, 258, 277-278	ice sheets*, 387, 426-428, 1170, 1174
acidification projections, 22, 27, 94, 105, 469, 528-	wind stress, 276-278, 784-785, 784-785	interglacials*, 386, 407-409, 425-428, 1146
532, <i>532</i>	See also Sea level; Sea level change	last 2,000 years, 389, 409-415, 409-410
attribution of changes, 870, 901-906, 926, 934-935	Optimal fingerprinting, 877-878	Last Glacial Maximum (LGM)*, 385, 389, 394, 403-
biogeochemical changes, 259, 291-301	Orbital forcing, 385-388, 399, 400	407, <i>404</i> , 776-777, <i>776-777</i>
carbon balance, 300, <i>301</i> , 498-499	Oxygen (O ₂)	last glacial termination, 389, 400-401, 428-432
carbon dioxide absorption, 11, <i>12</i> , 26, 51-52, 93,	atmospheric concentration, 476, 480, 1437	Last Interglacial (LIG), 385, 389, 407-409, 408,
259, 291-293, <i>293</i> , <i>295-300</i> , 300, 472, 495-499,	dissolved in oceans, 95, 259, 294-298, 300-301,	425-428, <i>427</i> , 1146
751, 870	300, 469, 905-906	last millennium, 917-920, <i>918</i>
CDR methods and, 549-550, 551	feedbacks, 480	Little Ice Age*, 386, 389, 413
circulation, 258, 281-285, <i>283</i> , 481, 956	oceanic, projections, 532-534, <i>534-535</i>	Medieval Warm Period*, 5, 386, 389
circulation, projections, 994-995, 1094-1095	Ozone*, 1000	methods, 385, 388
deep and bottom waters, 263, 279-280	depletion, <i>739</i> , 869, <i>937</i> , 998-999, 1000, 1078	models, 388, 403-405, 411-415, <i>413-414</i> , <i>456-464</i> ,
evaporation, 274-275, <i>275</i> , 276	long-term trends, 172-173	776-777, 820-821
fluxes, 258, 273-278	models, 744, 752, <i>757</i> , 774-775, <i>775</i>	modes of climate variability*, 386, 415-416

next glacial inception, 387, 435	runoff*, 91-92, 204-205, 956, 1081, 1081	distinguished from feedbacks, 573
ocean circulation, 433-435, <i>456</i> , 783-784	summary, 5, <i>7-8</i>	drivers of, 124
orbital forcing, 385, 386, 388, 399	trends, 202-203, 215, 624, 898	effective (ERF)*, 53, 574, 576-578, 578, 614-621
periods assessed, 389	warmer-get-wetter, 1219, 1240	619-621, 661, 770, 1052-1053, 1160-1161, 1404-
Pliocene*, 1145-1146	wet-get-wetter, 624	1409, 1433-1436
polar amplification, 385, 396-398	See also Monsoons	effective (ERF)*, defined, 664-665, 665
pre-industrial perspectives, 388-398, 389	Predictability*, 131, 953-1029	effective (ERF)*, probability density function*, 697
proxy methods*, 388, 394, 403-404, <i>457-458</i>	near-term predictions, 963-978	effective (ERF)*, total anthropogenic, 661
radiative forcing*, 385, 388-398	prediction quality/skill*, 85-86, <i>86</i> , 958, <i>960-961</i> ,	emission metrics, 710-720, <i>711</i> , <i>731-738</i>
reconstructions*, 77-78, 411-415, 414-415	966-978	external*, 388-398, 917-919
sea level, 47, 385, 425-432, 427-429, 1139, 1145-	terminology, 960	geographic distribution, 702-709, 703-705
1150, <i>1147</i>	See also Climate predictions	global mean, <i>89</i> , 693-701, <i>696-697</i>
temperature, 385-386, 395, 409-415, 417-420,	Principal component, 1223	Global Warming Potential and Temperature change
461-464	Probability density functions (PDFs)*, 134-135,	Potential, 663, 710-714
uncertainties*, 404, 411-412	134, 697	industrial-era, 661-662, 697-698, 697-698, 705-
volcanic forcing, 390, 391	Probability in climate predictions/projections,	708, <i>705</i>
Particulate matter. See Aerosols	961-962	land surface changes, 686-688, 1404-1409
Pattern scaling, 1058-1062, 1061	Projections. See Climate projections	limitations of, 667-668
Perfluorocarbons (PFCs), 161, 168-169, 679, 733-	Proxy methods*, 388, 394, 404, 457-458	models, 146, 700-701, 701, 818
<i>734</i> , 1000	•	natural forcings, 13-14, 14, 55-56, 126, 662, 688-
Permafrost*, 320, 362-364		693, 760, 1008
active layer*, 364-366, <i>365</i>	Q	orbital forcing, 385, 386, 387, 388, 399, 400
carbon storage in, 480, 526-528		paleoclimate*, 130, 385, 388-398
irreversible changes, 70-71, 1115, 1116	Quasi-Biennial Oscillation (QBO)*, 230, 744, 806,	polar amplification, 396-398
methane from, 508, 530-531, 541-542	<i>806, 1224,</i> 1254	pre-industrial, 388-398
models, 752		projections, 79-81, 662-663, 700-701, <i>701</i> , 955
near-surface*, 996		1005-1010, <i>1006-1007</i> , 1044-1054, <i>1048-1050</i>
observed changes, 9	R	1053
permafrost-climate feedback, 27		radiative transfer codes, 675-676
projections, 25, 27, 468, 541-542, 997	Radiation	scenarios, 79-81, 1046-1047, 1046
projections, long-term, 1032-1033, <i>1092</i> , 1093	radiative imbalance, 264	solar forcing, 388-391, 885-886, 1007, 1404-1409
subsea, 364	surface solar (SSR), 183-184, 184, 185-186	solar irradiance, 14, <i>14</i> , 126-127, <i>126</i> , 662, 688
temperature, 9, 25, 362-364, <i>362-363</i>	surface thermal and net, 184-185	691, 885-886
Perturbed physics experiments (PPEs), 1040	top of the atmosphere (TOA), 180-181, 580-582,	spatial and temporal patterns, 662, 702-709, 703
Phosphorus, 542	618, 620, <i>765</i> , 1069, <i>1069</i>	705, 709
Photosynthesis, 470, 471-472, 475, 478, 480, 502,	Radiation budget, 161, 180-186, 576	summary, 13-14, 56-57, <i>57</i> , <i>126</i> , 129, 661-663
545	cloud effects on, 580-582, <i>582</i>	693-701, 1052-1054, <i>1159-1161</i>
Polar amplification, 385, 396-398, 907, 1031, 1062-	global mean, 127, <i>181</i> , 182-183, <i>183</i>	surface albedo and energy budget, 360-361, 662
1064	rapid adjustments and, 573, 576	686-687, <i>687</i>
Polynyas, 329, 332-334	surface, changes in, 183-186, 184	time evolution of, 698-700, 698
Precipitation, 201-204	Radiative effect*, 573, 576, 578, 1161	timescales and, 128-129, 128
aerosol effects, 624-627	cloud radiative effect (CRE)*, 580-582, 582, 585-	uncertainties*, 667, 694-698, 694, 955, 1004
attribution of changes, 72, 870, 871, 896-897, 897-	586, <i>764</i> , 765	1008, <i>1005-1006</i>
898	Radiative efficiency, 717, 731-738	volcanic, 390, 391, 662, 691-693, 692-693, 923
extremes, 5, 7, 23, 110-112, 162, 211-212, 213-	Radiative forcing (RF)*, 13-14, 14, 53-57, 54, 127,	1007, <i>1404-1409</i>
214, 573, 626-627, 807, <i>808</i> , 871, 912, 956, <i>991</i> ,	659-740 , <i>1404-1409</i> , <i>1433-1436</i>	well-mixed greenhouse gases, 164, 661, 668, 676
992, 1082-1087	aerosols*, 13-14, 14, 576-578, 577, 614-623, 682-	679, <i>677-678</i>
extremes, indices of, 221	684, <i>1404-1409</i>	See also specific gases and components
extremes, physical basis for changes in, 626-627	aircraft and contrails, 574, 592-594, 686	Radiosonde records, 194-196, 195, 200-201, 206
global changes and projections, 1320-1321	anthropogenic, 13, 13-14, 14, 17, 146, 617, 661-	207
global distribution of, 1225	662, 675-688, <i>932-934</i> , 1005-1008	Rapid adjustments*, 355-357, 573, 576, 590, 605
global warming effects on, 624, 625	atmospheric carbon dioxide, 13	661, 664-665, <i>665</i> , 1005
large-scale changes, 201-204, 202-203, 624	atmospheric chemistry, 669-675	See also Abrupt climate change
models, 743, 761-762, 763, 811-813, 811-813,	calculation methodologies, 668-669, 669	Rebound effect*, 546
1013-1014	climate response, 395	Region(s)*, 1222
observations, 5, 7, 8, 22, 162, 201-204	clouds, 576-578, 577, 580-582, 582, 585-586, 620-	atlas (map), 1317
ocean precipitation, 275-276, 276	622	carbon cycle feedbacks, 522
projections, 7, 20-23, 22, 573, 956, 984-986, 985,	common properties of forcing compounds, 668	radiative forcing*, 705-708, <i>705</i>
991, 1014-1015, 1278-1287	comparison of previous reports, 696	Regional climate change, 73-74, 105-108, 106
projections, global, 1320-1321	concentration/emission changes, 668-669	1217-1308
projections, long-term, 91-92, <i>91</i> , 1032, 1055-	concept, <i>53</i> , 661, 664-668	annular and dipolar modes, 108, 1220, 1243-1246
1057, <i>1057</i> , 1076-1079, <i>1078</i>	confidence levels, 694-695, <i>694-695</i>	1288-1289
regional, 573, 1219-1220	definitions, 664-665, 665	Atlantic Multi-decadal Oscillation (AMO), 1220

Atlantic Ocean modes, 1239-1240	sea surface, 267-268, 268, 270, 1094, 1094	contributions to, 11, 25-26, 288, 291, 1139, 1142-
blocking, 1220, <i>1224</i> , <i>1246-1248</i>	trends in, 257, 273	1145, 1150-1179, <i>1177-1179, 1182</i>
changes and projections, 1322-1393	upper ocean, regional changes, 271-273, 301	extremes, 7, 101, 110, 112, 258, 290-291, 290,
climate indices, 209-213, 211-212	upper ocean, subsurface, 268-271	1140, 1200-1204
climate system, 930	Satellite-based methods, 164, 175, 182, 191, 207,	freshwater forcing and, 1193-1194
CO ₂ budgets, 501	208	glaciers and, 367, 1139, 1151-1153, 1151, 1163-
CO ₂ fluxes, 499, 500	altimetry*, 286, 287, 348-349	1165, <i>1164-1165, 1182</i> , 1184
confidence in projections, 1286-1287	GRACE, 349, 351-353, 380, 1156, 1157	global average, 10, 11, 1148-1149
cyclones, 1220, 1248-1251, <i>1288-1289</i>	Microwave Sounding Unit (MSU), 194-196, 195	global mean sea level rise, 90, 1140, 1152, 1156-
El Niño-Southern Oscillation (ENSO)*, 106-107,	sea level measurement, 1150	1159, <i>1157-1158</i> , 1179-1191
1240-1243, <i>1241-1243</i> , <i>1288-1289</i>	Scenarios*. See Climate scenarios; Emissions	ice sheets* and, 367, 1139, 1140, 1151, 1153-
extreme events, 211-212	scenarios	1155, <i>1154-1155</i> , 1159, 1165-1176, <i>1177-1179</i> ,
global means and, 1256-1257	Scientific method, 123	1182
in Holocene (paleoclimate), 417-425	Sea ice*, 69, 136-137, 323-335, <i>333-334</i> , <i>367</i> , 481	instrumental record (1700-2012), 1146-1161
large-scale storm systems, 1248-1253, 1250	aerosol absorption on, 617-618	land water storage and, 1151, 1155-1156, 1176-
models, 748, 810-817, <i>816</i> , <i>1013-1014</i> , 1219	Antarctic, 9, 18, 69, 319, 330-335, 333-334, 368,	1179, <i>1182</i>
modes of climate variability*, 1222-1223, 1223-	906-909, <i>908</i> , 1092	long-term scenarios, 98-101, 1186-1191, 1188,
1225	Arctic, 9, 10, 18, 24-25, 69, 271-273, 319, 323-	1190-1191
monsoon systems*, 105, 1219, 1222, 1225-1235,	330, <i>333-334</i> , <i>367</i> , 368, 906-908, <i>908</i> , 1087-1092,	measurements, 1146-1150
1288-1289	1089-1091	models, 1139-1140, 1142, 1144-1145, 1179-1183,
Pacific South American pattern, 1221, 1253	attribution of changes, 870, 906-909, 908, 931,	<i>1180-1184</i> , 1192-1193, <i>1192-1193</i>
precipitation, 1032, 1078-1079	936-937	models, compared with observations, 1152, 1158
projections, 956, 1001-1002, 1001-1003, 1014-	as climate change indicator, 136-137	nonuniformity of, 26
<i>1015</i> , 1031, 1032, 1078-1079, 1255-1277, <i>1256</i> ,	cloud interactions, 590	observed changes, 4, 10, 11, 46, 110, 124, 136,
1278-1289	drift, 328-329, 332	<i>137</i> , 157-158, 258, 291, <i>301</i> , <i>1151</i> , <i>1198</i>
projections, summary, 1288-1289	extent and concentration, 324-326, 325-326, 330,	ocean heat content/uptake*, 905, 1161-1163,
sea level, 100-101, <i>101</i> , 288-289, 1140, 1191-	331-332	<i>1162</i> , 1183-1184
1199, 1194-1197, <i>1195-1199</i>	irreversible changes, 1115, 1117-1118	ocean mass observations, 1156, 1157
temperature, 89-90, 869, 888-891, 889, 919, 930,	land-fast ice, 329, 334-335	ocean waves, 1202-1204, 1203
938-939, 1278-1285	models, 18, 20, 744, 751, 787-790, 787-789	paleoclimate*, 46, 47, 385, 425-432, 427-429,
tropical cyclones, 1248-1251, 1288-1289	observations, 40	1139, 1145-1150, <i>1147</i>
tropical phenomena, 105-106, 1219-1220, 1222,	observed changes, 136-137, 319, 367, 368, 386	past sea level change, 1139, 1145-1150, 1147
1235-1240, <i>1288-1289</i>	paleoclimate*, 420-421	process-based projections, 99-100, 1179-1180,
See also specific regions	projections, 20, <i>21-22</i> , 24-25, 956, 995-996	1180-1182
Regional Climate Models (RCMs)*, 748, 810-817,	projections, long-term, 92, 92, 1032, 1087-1092,	processes and linkages, 1143-1144, 1143-1144
<i>816, 1013-1014,</i> 1145, 1222	1088-1091	projected extremes, 1200-1204, 1201, 1203
Representative Concentration Pathways (RCPs)*,	rate of decrease, 319, 386	projections, 7, 20, 23, 25-26, 26, 97-101, 125, 137,
19-20, <i>22</i> , 25, <i>79-81</i> , <i>147-150</i> , 468, 523-526, <i>524-</i>	salinity effects on, 271-273	<i>157</i> , 1140, 1150-1191, <i>1445</i>
<i>529</i> , 1045-1047, <i>1100</i>	sea level equivalent, 321	projections with loss of Greenland ice sheet, 1140,
compared with SRES, 149-150, 997	summary, 9, 319, <i>367</i>	1169-1170
described, 29	thickness and volume, 319, 327-328, 328, 330-332	rate of, 258, 289-290, 291, 430-431
extensions, 1102, <i>1103</i>	trends, 329-330, 331, 333-334, 335	regional changes, 288-289, 1191-1199
projections and, 955-956, 1031, 1034, 1045-1047,	Sea level, 11, 127, 1137-1216	regional projections, 100-101, 101, 1140, 1194-
1100	anomalies, 286, 287	1197, <i>1195-1199</i>
uncertainties*, 1004-1005, 1005-1006, 1038-	geocentric, 1142, <i>1143</i>	satellite altimeter record (1993-2012), 1150
1039, <i>1038</i>	irreversible aspects of, 29	semi-empirical projections, 99-100, 1182-1184,
Respiration*, 470, 471-472, 477-478, 545	mean*, 1142, <i>1151</i> , 1156-1159	1184
River and lake ice, 320, 361-362, 367	measurement, 285-286, 312, 1142, 1146-1150	summary, 1139-1141, 1204-1205, 1204
River discharge. See Streamflow	models, 779-781, 781, 1139-1140, 1192-1193	thermal expansion* and, 99, 99, 1139, 1143, 1150-
Runoff*, 91-92, 204-205, 956, 1081, 1081	processes affecting, 1143-1144, 1143-1144	1151, <i>1151</i> , <i>1159</i> , 1161-1163, 1180, <i>1182</i>
	projections, 20, <i>23</i> , <i>26</i>	timescales, 1142
	relative (RSL)*, 1142, 1143, 1194-1197, 1195-	uncertainties*, 47-49,1197-1198, 1204-1205
S	1199	Sea level equivalent (SLE)*, 319, 320, 321, 344,
	storm-surge models, 1200-1202	349-350, <i>350</i> , <i>352-354</i> , 353, 1153
Salinity (of oceans), 257, 265-273, 269-270, 280,	trends in, 286-288, <i>287</i> , <i>289</i> , <i>291</i>	Sea level pressure (SLP), 223-224, 223-224, 871,
<i>301</i> , 904-905, <i>904</i>	Sea level change*, 12, 47-49, 98-101, 258, 285-289,	901
attribution of changes, 870, 904-905	1137-1216	projections, 1071-1072, 1071
before fossil fuel era, 481	atmospheric pressure change and, 1193, 1193	Sea salt, 1048-1050
defined, 265	attribution of changes, 19, 110, 870, 905, 1156,	Sea spray aerosols, 599-601
measurement, 312	1176-1179	Sea surface temperature (SST)*. 164. 190-194. 190-

budget, 1156-1159, 1157-1158

confidence in projections, 1184-1186

commitment, 28, 1140

models, 778-779, 778, 783

projections, 994, *994*

sea ice and, 271-273

193, 480-481

observations, 5, 6

models, 777-779, 778-780

paleoclimate*, 416, 420, 422, 458 South American Convergence Zone, 1221 T projections, 994-995, 1093 South Atlantic Convergence Zone (SACZ), 1237 proxy methods, 458 South-east Asia, 106, 211-212, 1273, 1274, 1378-Teleconnections*, 233, 1224, 1243, 1243 tropical phenomena and, 1235, 1236 models, 805, 806 variability, 107 South Pacific Convergence Zone (SPCZ)*, 1219, Temperature, 5, 187-201, 926 Sectors 1236-1237 anomalies, 197, 461-462, 768, 1059 emission metrics and impacts, 719-720, 720 Southern Annular Mode (SAM)*, 231, 233-235, atmosphere and surface, 4-5, 6, 60-68, 161-162, radiative forcing and temperature, 663 354, 871, 900-901, 900, 937, 1245-1246 187-201, 869-870, 984 Snow, ice and frozen ground, 320, 358-360, 367 impacts, 1224 attribution of changes, 17-19, 60, 869-870, 871, aerosol absorption on, 574, 617-618, 685 models, 415-416, 801, 806 878-893, 918-920, 930, 932-934 attribution of changes, 870, 906-910, 931, 936-937 paleoclimate*, 386, 415-416 cold days/cold nights*, 86, 162, 210-212, 221, 956, frozen ground, 320, 362-366, 367 projections, 108, 1220, 1245, 1246 990, 1065-1066, 1067 glaciers*, 9, 24, 319, 335-344 summary, 806 commitment, 20 ice sheets and shelves*, 9, 320, 344-357, 367 Southern Ocean, 273, 783, 1141 diurnal temperature range (DTR)*, 188 models, 790, 790 polar amplification, 396-398 evidence for warming, 198-199 observed changes, 4, 320 projections, 24, 1095 extremes, 19, 109-112, 209-212, 209-212, 218projections, 24-25, 92, 92-93, 996, 1032-1033, temperature, 354, 387, 780 219, 807, 808, 871, 910-912, 931, 1064-1068 SRES scenarios*, 131-132, 146-147, 149-150, 955, 1092-1093, 1092 free atmosphere, 196-201, 197-201, 984 river and lake ice, 320, 361-362, 367 997, 1034, 1045, 1100 geoengineering and, 29, 574-575 seasonal snow, 320, 358-361, 358-360 Stabilization. See Climate stabilization global changes and projections, 1318-1319 Storm surge*, 1200-1202 snow albedo, 321, 358, 359 global diurnal temperature range (DTR), 162 snow cover (Northern Hemisphere), 9, 10, 24, 25, Storm tracks*, 229, 743, 773, 956 global instrumental record, 881-885, 882 92, 93, 320, 358, 358-359, 367, 870, 910, 931, 937, projections, 1074, 1075, 1220 global mean surface air surface temperature, 131-996, 1092-1093, 1092 Stratosphere*, 130 132, 132, 955-956, 1409 snow-cryosphere interactions, 360-361 aerosols*, 627-628, 693 global mean surface air temperature, 23 snowfall, 204, 358-361 Brewer-Dobson circulation*, 163, 230, 1073-1074, global mean surface temperature (GMST)*, 20, 21, Soil moisture*, 790-791, 897 23, 90, 121, 161-162, 164, 192-194, 192-194, 385, projections, 91-92, 956, 988, 1079-1080, 1080 ozone, 161, 171-172, 172, 672-674, 681-682, 681, 878-880, 879, 1011 Solar activity*, 393 774-775, 1000, 1048-1050, 1078, 1428 global mean surface temperature, models, 743, Solar forcing, 388-391, 885-886, 1007, 1048-1050 stratospheric-tropospheric relations, 753 769-772 Solar irradiance, 14, 14, 19, 126-127, 126, 392-393, temperature, 162, 197, 892-893, 893 global mean surface temperature, variability, 887-688-691, 885-886 water vapour, 161, 170-171, 171, 661-662, 681-888, 888-889 global dimming*, 161, 183-184, 794 global temperature change potential, 17, 663, 712-Streamflow*, 204-205 measurement, 689-690, 689 714, 714-715, 720 paleoclimate*, 388-391 Sulphate aerosols, 81, 605-606, 616 global warming potential*, 17, 663, 710-714, 711projections, 86, 690, 955-956 Sulphur cycle, 537, 539 radiative forcing*, 662, 688-691, 1404-1409 Sulphur dioxide (SO₂), 127, 538, 684, 794, 1402 heat waves*, 110, 162, 211-212, 212, 915, 916, surface solar radiation (SSR), 183-184, 184, 185geoengineering with, 627 models, 744, 794, 795 interannual variability, 5, 6, 207-208 total (TSI)*, 19, 388-391, 394-395, 662, 689-690, Sulphur hexafluoride (SF₆), 161, 168, 169, 733 land-surface air temperature (LSAT)*, 162, 164, projections, 1412, 1423 187-189, 187 variations, 689-690, 689 radiative forcing*, 678, 679, 1434 last 2,000 years, 409-415, 409-410 Solar radiation*, 126-127, 126, 662 Surface marine air temperature (MAT), 191 projections, 543, 662 climate projections*, 980-993 mitigation*, 27-28 land surface changes, 684-688 See also Orbital forcing models, 15-16, 20, 743-745, 760-761, 761-762, Solar Radiation Management (SRM)*, 29, 469, models, 131-132, 132, 750-751 767-771, 768, 769-772, 777-779, 778-780, 807, 574-575, 627-635, 633-634 observations, 5, 6-7, 130, 159-254 810, 811-813, 1013-1014 cirrus thinning, 628 wind speed, 224-226 observed changes, 4, 6-7, 22, 121, 124, 131-132, climate response and, 629-635, 629-631 See also Atmosphere; Hydrological cycle 132, 187-201, 878-881, 879-881 cloud brightening, 628 Surface air temperature, 760-761, 761, 974-975, observed variability, 393, 744, 869 impacts on carbon cycle, 551-552 980-984, 981-982 oceans, 5, 6, 8, 10, 68-69, 257, 260-265, 266-267, side effects and risks, 575, 627-628, 634 Surface fluxes, 784-786, 784-785, 897 274-275, 280, 311, 311-312, 901-903, 902 stratospheric aerosols, 627-628, 693 Surface solar radiation (SSR), 183-184, 184, 185paleoclimate*, 385-386, 395, 398-399, 409-420, summary, 635 418-419, 461-464 surface albedo, 628 Surface temperature*, 5, 6-7, 60-66, 60, 187-194, radiative forcing overview, 62 Solubility pump*, 472 461-462, 577, 760-761, 761-762, 878-881, 879sea surface temperature (SST)*, 6, 107, 164, 190-**South America** 194. 190-193. 777-779. 778-780. 806. 994-995. interannual variability, 6, 207-208 climate indices, changes in, 211-212 monsoon, 1233-1234, 1233 projections, 980-984, 981-982 summary, 5, 6-7, 161-162 precipitation extremes, 211-212, 213 surface*, 5, 6-7, 60-66, 60, 161-162, 187-194, 461projections, 106, 1261-1264, 1262-1263, 1280-

462, 577, 743, 878-881, 879-881

980-984. 981-982

surface air temperature, 760-761, 761, 974-975,

1281, 1288, 1338-1349

trends, 194, 194, 197-201, 222, 880, 895 upper air, 162, 194-201, 197, 772-773, 774 upper ocean, 257, 258, 261-262, 261, 263, 265, 301, 301 warm days/warm nights*, 86, 162, 210-212, 221-222, 956, 990, 1065-1066, 1067 warming hiatus, 61-63, 769-772, 798, 909 warming hole in N. America, 212 Temperature projections, 7, 20, 21-23, 125, 155,	993, 1220, 1248-1251, 1288-1289 Tropical Indian Ocean Variability, 233-235 Tropics, 1217, 1219-1220, 1235-1240 atmospheric circulation, 226-230, 989-990, 989, 1073 convergence zones, 421-422, 1219, 1221, 1222, 1235-1237, 1236-1237 extratropical modes, 415-416 paleoclimate*, 415, 420	Volcanic eruptions, 15, 86, 140, 393-394, 691-693 as analogues, 693 climate prediction and, 1008-1009 models, 391 projections, 693, 1007 volcanic forcing, 390, 391, 662, 691-693, 692-693, 923, 1007, 1048-1050, 1404-1409
929, 1278-1287, 1444-1445 extremes, 991-992, 991, 1031-1032, 1064-1068, 1067-1068 free atmospheric temperature, 984 global mean surface temperature, 972, 980-984, 981, 1010-1012, 1012-1013, 1444-1445 global projections, 1318-1319 long-term, 89-90, 1031-1032, 1054-1057, 1054-1056, 1062-1068, 1063, 1065, 1067-1068 near-term, 85-86, 87, 955-956, 980-984, 993-995, 993-994, 1009-1012, 1011-1012 ocean temperature, 956, 993-995, 993-994 regional projections, 1014, 1031 skill in, 974, 977-978, 977 summary, 955-956, 1009-1012, 1011-1012 surface air temperature, 974-975, 980-984, 981-982 timescale, 28 uncertainties*, 140-141, 1006, 1006 zonal average, 1064, 1065	precipitation, 1219 projections, 1235-1240, 1288-1289 tropical modes, 415 tropical Pacific mean state, 1240, 1241 tropical phenomena, 105-106, 1219-1220, 1222, 1235-1240, 1288-1289 tropical storms, 216-217 warmer-get-wetter pattern, 1219, 1240 Tropopause*, 226, 228 Troposphere*, 130 humidity, 206-208 ozone, 161, 172-173, 670-672, 672-673, 679-681, 680-681, 684, 775, 998-999, 1048-1050, 1428-1429 stratospheric-tropospheric relations, 753 temperature, 5, 162, 195, 197, 772-773, 774, 891-892 water vapour, 207, 207 Tropospheric Biennial Oscillation (TBO), 805, 1224, 1253-1254	Walker Circulation*, 163, 226-229, 227 projections, 90, 991, 1032, 1073 Warm days/warm nights*, 162, 210-212, 221-222 projections, 86, 956, 990, 1065-1066, 1067 Warmer-get-wetter pattern, 1219, 1240 Water cycle. See Hydrological cycle Water vapour, 207, 624, 666-667, 896 feedbacks, 586-587, 587, 667, 819 projections, 1076, 1076 radiative forcing*, 126, 661-662, 666-667 stratospheric, 161, 170-171, 171, 661-662, 681-682 tropospheric, 207, 207, 265 water vapour-lapse rate, 586-587, 587, 819 See also Humidity Wave height, 258, 277-278, 1141 projections, 101, 1202-1204, 1203 Weather, 229-230
See also Regional climate change		climate and, 123-126, 914-917
Thematic Focus Elements (TFEs) Carbon cycle perturbations and uncertainties, 96-97 Climate extremes, 109-113 Climate sensitivity and feedbacks, 82-85 Climate targets and stabilization, 102-105 Comparing projections from previous IPCC assessments with observations, 64-65 Irreversibility and abrupt change, 70-72 Sea level change: scientific understanding and uncertainties*, 47-49 The changing energy budget of the global climate system, 67-68 Water cycle change, 42-45 Thermal expansion*, 1139, 1143, 1150-1151, 1159 projections, 99, 99, 1161-1163, 1180, 1182 Thermal radiation, 184-185 Tide gauge* records, 285-286, 1146-1150, 1201 Timescales, 28, 125, 128-129, 128, 1033, 1105-1107 Tipping points*. See Irreversibility	Uncertainty*, 36, 114-115, 121, 139-142, 140-141 carbon cycle*, 96-97 climate models*, 139-142, 140-141, 809-810, 815, 1035-1040, 1038, 1197-1198 climate projections, 115, 955, 978-980, 979, 1004-1012, 1035-1040, 1038, 1057-1058, 1058, 1197-1198 in observations, 36, 114, 165, 810 quantification, 1040-1044 scenario uncertainty, 1038-1039, 1038 sea level change*, 47-49 temperature projections, 140-141 See also Variability Urban albedo, 687 Urban heat islands*, 162, 188-189	Wetlands, 539-541 Winds mid-latitude westerlies, 956 models, 784-785, 784-785 projections, 1072, 1072 upper-air, 226 wave height and, 258, 277-278, 1141 wind speeds, 217, 220, 224-226, 225 wind stress (oceanic), 276-278, 784-785, 784-785
Top of the atmosphere (TOA) radiation, 180-181,	V	

Variability, 121, 129-130, 138, 163, 164, 232-235

natural, 121, 129-132, 138, 140

See also Climate variability

projections, 1097-1099, 1098

Volcanic aerosols, 14, 662, 691-693

models, 795-806

paleoclimate*, 386

models, 752, 791

Vegetation

internal*, 61-62, 138, 769-770, 869, 919, 923

Volatile organic compounds (VOCs)*, 127, 718, 740

Top of the atmosphere (TOA) radiation, 180-181, 580-582, 618, 620, 765, 1069, 1069

Transient climate response (TCR), 128, 817-818,

Transient climate response to cumulative CO₂

projections, 102-104, 1033, 1108-1109, 1113

Tropical cyclones, 7, 107-108, 108, 110, 162, 216-

217, 216, 807, 871, 913-914, 938, 956, 992-993,

emissions (TCRE)*, 16-17, 871, 926-927

Tropical Atlantic Ocean Variability, 233-235

821, 871, 920-921, *925*

Trend models, 179-180

projections, 81, 84-85, 1033

summary, 16-17, 1110-1112

1535